
Semiclassical tunneling in the BEC dimer
Tadeusz Pudlik,1 Dirk Witthaut,2 Holger Hennig3 and David K. Campbell1

1 Department of Physics, Boston University 2 Network Dynamics, MPIDS 3 Broad Institute

The Big Question

What’s the simplest way to think about dynamical
tunneling in an optical lattice?

System

The BEC dimer consists of two
coupled wells containing N
condensed bosons. Neglecting
states other than the lowest in each
well, we get the Bose-Hubbard
dimer:

Ĥ = −J(â†1â2 + â†2â1) + U

2
(n̂1(n̂1 − 1) + n̂2(n̂2 − 1)) ,

where âi is the annihilation operator for a boson in well
i and n̂i ≡ â†i âi is the number operator.

Mean-field model

A mean-field approximation is obtained by replacing
operators with functions [1]. Define,

z = 〈n1 − n2〉
〈n1 + n2〉

Population imbalance

exp(ıφ) = 〈a†1a2〉
‖〈a†1a2〉‖

Relative phase

The evolution of z and φ is governed by the Hamilto-
nian,

HMF = Λz2

2
−
√

1− z2 cosφ
where Λ = UN/2J captures the strength of particle in-
teractions. The mean-field model exhibits a bifurcation
at Λ = 1:
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The two centers at |z| > 0 are the self-trapping points.
Experiments confirm the predictions of the mean-field
model, at least for relatively short times [2, 3].

Self-Trapping & Tunneling

self-trapping In the mean-field model, a system
initially in a coherent state sufficiently near one
of the stable fixed points remains in its
neighborhood forever.

tunneling In the full quantum treatment, tunneling
takes place between the self-trapping points.

To visualize the tunneling, define the Husimi function
of a state |ψ〉:

Qψ = |〈ψ|z, φ〉|2,
where |z, φ〉 is a coherent state [4].

Below see Qψ over time for a coherent initial state at
a self-trapping fixed point (N = 40, Λ = 1.1 and J =
10 ~/s):
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Dimensional reduction

Let |E0(z, φ)〉 and |E1(z, φ)〉 be the two most probable
energy eigenstates for a given coherent state |z, φ〉.
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Their contribution∑
i=0,1|〈Ei | z, φ〉|2 to

the total probability
weight of |z, φ〉 is shown
on the left (for N = 40,
Λ = 5).

Near the self-trapping fixed points, only a few energy
eigenstates contribute to the dynamics of the coherent
state.

But note that as N
increases, the system
becomes “less discrete” and
more states are needed for
an effective approximation.
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Two-state model

Coherent state ≈ symmetric + antisymmetric states.

This ansatz produces very accurate predictions. The
energy difference between the two eigenstates is very
nearly equal to the dominant frequency in the power
spectrum obtained by integrating the Schrödinger
equation numerically.

On the right,
predicted tunneling
frequencies for
various N , with
J = 10 ~/s.
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The mean-field limit is approached as N is increased,
but how quickly? What determines the Λ dependence?

Semiclassical quantization

We extend the approach of [5]; see also [6].
If the splitting due to the
tunneling is small, it is,

∆E ≈ ~ω exp(−πSε)
with ω the classical frequency
and Sε the (Euclidean) action
associated with the tunneling.
Via asymptotic approximations we find that for the
ground state, for large N , the tunneling frequency is,

f ≈ ω

2π2

(2
ω

exp(−z0)
)(N+1)(1−e)

where z0 =
√

1− 1/Λ2 is the position of the fixed point
and,

ω ≈ 2
√

Λ2 − 1

e ≈ 2Λ
√

Λ2 − 1
(Λ− 1)2(N + 1)

semiclassical

numerical
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This simple
expression works very
well, except for
(Λ− 1) so small that
the self-trapping
regions have area
smaller than h/2.

Predictions for experiment

In principle, tunneling between the fixed points should
be observable in current experiments.

The tunneling frequency
expected in the
experiment of [3]
(N = 500 and
U = 2π × 0.063 ~/s) is
shown on the right. 0.9 1 1.1
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But there are challenges:
retention time experimental trapped atom lifetimes are

only ∼ 100 ms
tilt tunneling frequency will be lowered if the wells’

chemical potentials differ [7]

Only a Few States Matter

Sufficiently near the self-trapping fixed point, only two energy eigenstates have significant overlap with the
coherent state. These states are symmetric and antisymmetric combinations of localized states, and their
energy splitting can be accurately estimated semiclassically.
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