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ABSTRACT

This dissertation discusses a number of theoretical models of coupled bosonic modes, all

closely related to the Bose–Hubbard dimer. In studying these models, we will repeatedly

return to two unifying themes: the classical structure underlying quantum dynamics

and the impact of weakly coupling a system to an environment. Or, more succinctly,

semiclassical methods and open quantum systems.

Our primary motivation for studying models such as the Bose–Hubbard is their rele-

vance to ongoing ultracold atom experiments. We review these experiments, derive the

Bose–Hubbard model in their context and brie�y discuss its limitations in the �rst half

of Chapter 1. In its second half, we review the theory of open quantum systems and

the master equation description of the dissipative Bose–Hubbard model. This opening

chapter constitutes a survey of existing results, rather than original work.

In Chapter 2, we turn to the mean-�eld limit of the Bose–Hubbard model. After re-

viewing the striking localization phenomena predicted by the mean-�eld (and con�rmed

by experiment), we identify the �rst corrections to this picture for the dimer. The most

interesting of these is the dynamical tunneling between the self-trapping points of the

mean-�eld. We derive an accurate analytical expression for the tunneling rate using

semiclassical techniques.

We continue studying the dynamics near the self-trapping �xed points in Chapter 3,

vi



focusing on corrections to the mean-�eld that arise at larger nonlinearities and on shorter

time scales than dynamical tunneling. We study the impact of dissipation on coherence

and entanglement near the �xed points, and explain it in terms of the structure of the

classical phase space.

The last chapter of the dissertation is also devoted to a dissipative bosonic dimer

model, but one arising in a very di�erent physical context. Abandoning optical lattices,

we consider the problem of formulating a quantum model of operation of the cylindrical

anode magnetron, a vacuum tube crossed-�eld microwave ampli�er. We derive an e�ec-

tive dissipative dimer model and study its relationship to the classical description. Our

dimer model is a �rst step towards the analysis of solid-state analogs of such devices.
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Chapter 1

Introduction

In this chapter, we brie�y review the experimental and theoretical developments that

motivate our work. In particular, we discuss the phenomenon of Bose–Einstein conden-

sation, the rise of optical lattices and related systems, the Bose–Hubbard model, and open

quantum systems techniques.

1.1 Bose–Einstein condensation

The Bose-Einstein condensate (BEC) is an exotic state of matter originally predicted in

the 1920s (Bose, 1924; Einstein, 1924), but created in the laboratory only in the remarkable

experiments of Cornell and Wieman (Anderson et al., 1995), Ketterle (Davis et al., 1995),

and Hulet (Bradley et al., 1995) in 1995.1 In the BEC, the de Broglie wavelength of the

atoms exceeds the interatomic spacing, and the atomic gas obeys quantum statistics. As

a consequence, the condensate is characterized by the macroscopic population of a single

quantum state; this leads to a host of unusual experimentally observable properties, such

as matter-wave interference (Andrews et al., 1997), quantized vortices (Matthews et al.,

1999), or solitons (Becker et al., 2008).

The literature on Bose–Einstein condensation is vast and no attempt will be made
1Super�uid Helium 4 is also a condensed state of bosons; it was observed by Kapitsa, Allen and Misener

as early as 1937, and recognized as exhibiting BEC physics by Fritz London just a year later (London, 1938).
However, due to strong interactions among the helium atoms the fraction of atoms participating in the
condensate is low, approximately 0.1.
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to summarize it here. Instead, the interested reader is referred to the many excellent

textbooks (Pethick and Smith, 2008), monographs (Pitaevskii and Stringari, 2003), and

reviews (Dalfovo et al., 1999; Castin, 2000; Leggett, 2001) of the subject.

1.2 Optical lattices

The �rst atomic Bose-Einstein condensates were con�ned in harmonic traps, but more

interesting potentials were rapidly developed. At the very simplest, the condensate can

be cut into two with a laser sheet (Andrews et al., 1997), or it may be composed of two

di�erent spin states (Zibold et al., 2010). In either case, we now have two condensates,

the relative phase of which can be controlled by subjecting one of them to a microwave

pulse. The next advance is loading the condensate into an optical lattice, an array of

microscopic potentials induced by the ac Stark e�ect of interfering laser beams. The

very latest developments, such as the quantum gas microscope (Bakr et al., 2009), allow

for subjecting a condensate con�ned to a plane to an essentially arbitrary potential.

The strength and even sign of interactions among the atoms of the condensate can be

tuned by means of a Feshbach resonance (Chin et al., 2010). The combination of tunable

interactions with a range of external potentials is what gives ultracold atoms in opti-

cal lattices their rich behavior and makes them subjects of study not just in atomic but

also in many-body and condensed matter physics. A famous early example of the rich

phenomenology accessible in these systems was the observation of the Mott insulator-

super�uid transition (Greiner et al., 2002a).



3

1.3 The Bose–Hubbard model

The aforementioned Mott insulator-super�uid transition in a su�ciently deep (strong)

optical lattice can be most simply explained in the framework of the Bose–Hubbard

model (Jaksch et al., 1998). This model will be the starting point for work described

in this dissertation. Because of its central importance, in this section we show how the

Bose–Hubbard arises from a more general description of the optical lattice and discuss

its validity as an approximation to the full dynamics.

1.3.1 Derivation

We begin with the Hamiltonian,

H =

∫
d3x ψ̂ †(x)

(
−
~2

2m
∇2 +V0(x) +VT (x)

)
ψ̂ (x)

+
1
2

4πas~2

m

∫
d3x ψ̂ †(x)ψ̂ †(x)ψ̂ (x)ψ̂ (x),

(1.1)

where V0 is the periodic optical lattice potential, VT the trap potential, and ψ̂ (x) the

bosonic �eld operator at x. The interaction between the atoms is approximated by a

short-range pseudopotential with an s-wave scattering length of as , appropriate if the

gas is dilute: na3
s � 1, where n is the density (Dalfovo et al., 1999). The �eld operator can

be expanded in Wannier functions indexed by i , which (since the potentialV0 is assumed

deep) will be “well-localized” at the minima of the potential at xi , in a sense to be made

precise later. If we assume the energies in the system are low compared to the interband

energy gap, we can restrict the expansion to the �rst band, and truncate the expansion

at the �rst term:

ψ̂ (x) =
∑
i

âiw (x − xi ), (1.2)
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By “well-localized” Wannier functions we mean such that integrals of the form,

∫
d3x V0w

∗(x − xi )w (x − xj )

or ∫
d3x w∗(x − xi )∇2w (x − xj ) (1.3)

are negligibly small if sites i , j are more distant than nearest neighbors. Then, up to a term

which is a constant if the number of atoms is conserved, the Hamiltonian of Equation 1.1

is the Bose–Hubbard model,2

H = −J
∑
〈i,j〉

â†i âj +
∑
i

ϵin̂i +
1
2
U

∑
i

n̂i (n̂i − 1̂), (1.4)

where n̂i ≡ â†i âi and the parameters are,3

J =

∫
d3x w∗(x − xi )

(
−
~2

2m
∇2 +V0(x)

)
w (x − xi+1),

ϵi =

∫
d3x VT (x) |w (x − xi ) |2,

U =
4πas~2

m

∫
d3x |w (x − xi ) |4.

(1.5)

The consistency of this tight-binding model can be evaluated by considering a harmonic

approximation in which the potential V0 is expanded about the minimum of the well. If

the frequency of the harmonic motion about the minimum is ν , the size of the harmonic

ground state wavefunction is a0 =
√
~/mν , and the well spacing λ/2, the tight-binding

model can only be valid if,

as � a0 � λ/2,
2The notation

∑
〈i, j〉 indicates a sum over nearest neighbors.

3 J and U are independent of i because of the translational symmetry of the lattice.
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that is, the interaction is localized relative to the orbitals, which are in turn localized on

the scale of the lattice spacing, and

1
2
Uni (ni − 1) � ~ν ∀i,

that is, the interaction energy is much smaller than the band spacing (so the higher bands

remain unoccupied).

These conditions are typically satis�ed in optical lattice experiments. But while nec-

essary, they are in general not su�cient for the Bose–Hubbard model to be a good ap-

proximation. Studies of small systems with more accurate techniques such as the mul-

ticon�gurational time-dependent Hartree algorithm, which allow for the treatment of

multiple bands, show that the Bose–Hubbard approximation to an optical lattice may be

misleading in certain parameter regimes (Sakmann et al., 2009; Sakmann, 2010, 2011).

Such discrepancies are yet to be observed experimentally.

1.3.2 The Bose–Hubbard without an optical lattice

In the preceding section we derived the Bose–Hubbard model in the context of an op-

tical lattice, arguably its most natural realization in cold-atom physics. Other realiza-

tions are possible, however; many experimental groups today, including those perform-

ing work most closely related to this thesis, choose to employ internal, rather than mo-

tional, bosonic degrees of freedom. Such realizations were originally conceived by Cirac

et al. (1998). The derivation of the Bose–Hubbard model in this context is similar to the

one presented above, with plain localized spatial wavefunctions replacing Wannier func-

tions. The key assumption is again the restriction to a single such wavefunction, in this

context referred to as the “one-mode approximation.”

The one-mode approximation is expected to break down in large condensates, when
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collisional interactions among atoms in a mode a�ect the spatial wavefunction (Steel

and Collett, 1998). A simple estimate due to Milburn et al. (1997) suggests the critical

size is a few hundred atoms. Another potential problem is that the spatial wavefunc-

tion may be spin-dependent, as a result of the spin-dependence of the s-wave scattering

length as . This e�ect can be estimated by studies of the ground state modes of the two

species (Zibold, 2012, Section 3.6) and has been shown to be small for experimentally

relevant parameter values.

1.3.3 Mean-�eld approximation

If the number of atoms per mode is large, the dynamics of interacting cold atoms can

be approximately described by a mean-�eld model. In this section we brie�y review its

standard derivation due to Trombettoni and Smerzi (2001), by �rst obtaining the Gross–

Pitaevskii (GP) equation and then making the single-mode approximation, leading to the

discrete nonlinear Schrödinger (DNLS) equation. In the next chapter, we will discuss

an alternative approach, deriving the DNLS for the dimer case directly from the Bose–

Hubbard model.

Consider again the many-body Hamiltonian of Equation 1.1. Using the canonical

commutation relation [ψ̂ (x),ψ̂ (x′)] = δ (x − x′), the equation of motion of the bosonic

�eld operator can be shown to be,

ı~
∂

∂t
ψ̂ (x, t ) = [ψ̂ (x),H ] =

(
−
~2

2m
∇2 +V0(x) +VT (x) +

4πas~2

m
ψ̂ (x)†ψ̂ (x)

)
ψ̂ (x). (1.6)

We decompose the �eld operator in a generalization of Bogoliubov’s approach (Dalfovo

et al., 1999),

ψ̂ (x, t ) = Φ(x, t ) + ψ̂ ′(x, t ), (1.7)
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where Φ(x, t ) ≡ 〈ψ̂ (x, t )〉. The mean �eld approximation consists of setting ψ̂ ′(x, t ) = 0.

The equation of motion for Φ follows immediately from Equation 1.6:

ı~
∂Φ(x, t )
∂t

=

(
−
~2

2m
∇2 +V0(x) +VT (x) +

4πas~2

m
|Φ(x, t ) |2

)
Φ(x, t ). (1.8)

This is the Gross–Pitaevskii equation.

To obtain a mean-�eld approximation to the Bose–Hubbard model, we make a tight-

binding approximation to the GP equation (Smerzi et al., 1997; Raghavan et al., 1999).

Speci�cally, we assume the mean-�eld wavefunction can be decomposed,

Φ(x, t ) ≈
√
N

∑
n

ψn (t )ϕn (x), (1.9)

where N is the number of atoms in the system, and ϕn (x) ≡ ϕ (x − xn ) is normalized

(
∫
|ϕn (x) |2 d3x = 1) and localized near the nth minimum of V0, so that

∫
ϕn (x)ϕn+1(x) d3x ≈ 0,

∫
∇ϕn · ∇ϕn+k d

3x ≈ 0 if |k | > 1. (1.10)

Substituting this decomposition into the GP equation, multiplying by ϕ∗
k
(x) and integrat-

ing over all space, we obtain (dropping the explicit x dependence of ϕn for legibility),

ı~
∂ψk
∂t
= −
~2

2m

(
ψk

∫
(∇ϕk )

2 d3x +ψk+1

∫
∇ϕk · ∇ϕk+1 d

3x +ψk−1

∫
∇ϕk · ∇ϕk−1 d

3x
)

+ψk+1

∫
ϕ∗kϕk+1V0(x) d3x +ψk−1

∫
ϕ∗kϕk−1V0(x) d3x +ψk

∫
|ϕk |

2VT (x) d3x

+
4πas~2

m
N |ψk |

2ψk

∫
|ϕk |

4 d3x.
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Regrouping the terms,

ı~
∂ψk
∂t
= −(ψk+1 +ψk−1)

[
~2

2m

∫
∇ϕk · ∇ϕk+1 d

3x −
∫

ϕ∗k (x)ϕk+1V0(x) d3x
]

+ψk

[∫
|ϕk |

2VT (x) d3x −
~2

2m

∫
(∇ϕk )

2 d3x
]

+
4πas~2

m
N |ψk |

2ψk

∫
|ϕk |

4 d3x.

Now, let

J =
~2

2m

[∫
∇ϕk (x) · ∇ϕk+1 d

3x −
∫

ϕ∗k (x)ϕk+1(x)V0(x) d3x
]
,

εk =
1
2J

[∫
|ϕk (x) |2VT (x) d3x −

~2

2m

∫
(∇ϕk (x))2 d3x

]
,

Λ =
4πas~2N

2Jm

∫
|ϕk (x) |4 d3x,

(1.11)

and de�ne a de-dimensionalized time scale τ = 2J
~ t . This yields the discrete nonlinear

Schrödinger equation,

ı
∂ψk
∂τ
= −

1
2
(ψk+1 +ψk−1) + εkψk + Λ|ψk |

2ψk . (1.12)

Comparing the parameters of the DNLS equation with those of the Bose–Hubbard (Equa-

tion 1.5), it is tempting to conclude that Λ = UN /2J . However, the replacement of op-

erators with c-numbers in the derivation of the GP equation is valid only in the limit of

large atom number N , when N ≈ N ± 1, so this expression is only expected to be valid

asymptotically as N → ∞. As we will show in Chapter 2, a more careful analysis, with

due attention devoted to symmetrizing operators before replacing them with c-numbers,

shows that Λ = U (N + 1)/2J .
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1.4 Open quantum systems

In this section we review the theory of open quantum systems (Breuer and Petruccione,

2002), which provides a set of techniques for modeling quantum systems coupled to ex-

ternal reservoirs. In Chapters 3 and 4, these techniques will be applied to the study of

two models consisting of a dimer exchanging energy and particles with reservoirs: the

open Bose–Hubbard dimer and the quantum magnetron, respectively.

1.4.1 The Born–Markov master equation

The primary subject of study in textbook quantum mechanics is an isolated system,

such as a particle in a harmonic potential, the electrons and nuclear cores comprising a

molecule, or electrons in a lattice potential. But there arise situations in which the small

system we are interested in studying is weakly coupled to a much larger system which

cannot be entirely ignored. Examples of this include atoms interacting with a microwave

cavity (Carmichael, 1993), quantum dots coupled to leads (Datta, 2005), or applications

requiring quantum feedback and control (Wiseman and Milburn, 2010).

Because the environment to which our small system is coupled is typically not of

inherent interest, yet much too large to treat exactly, the �rst step is to derive an e�ec-

tive model of the system into which the environment only enters parametrically. In other

words, the model should include no quantum operators de�ned on the large Hilbert space

of the environment. Achieving this requires approximations, most commonly the Born

approximation (weak system-environment coupling) and the Markov approximation (the

environment is too large for its dynamics to be a�ected by the dynamics of the system).

Applying these approximations yields the so-called Born–Markov master equation gov-

erning the time evolution of the system’s density matrix. A physically meaningful Marko-

vian master equation can always be expressed in the so-called Lindblad form (Wiseman
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and Milburn, 2010, p. 119),

dρ

dt
= −ı[Ĥ , ρ] +

K∑
k=1
D[L̂k]ρ, (1.13)

where ρ is the density matrix of the system, Ĥ is a Hermitian operator, {L̂k } are arbitrary

operators such that
∑K

k=1 L̂
†

k
L̂k is a bounded operator,4 and the superoperatorD is de�ned

as,

D[Â]ρ ≡ ÂρÂ† −
1
2

(
Â†Âρ + ρÂ†Â

)
. (1.14)

For a BEC in an optical lattice in the single-mode (i.e., Bose–Hubbard) approximation

coupled to a thermal gas of noncondensed atoms, the master equation reads (Anglin,

1997; Ruostekoski and Walls, 1998; Witthaut et al., 2011),

dρ

dt
= −ı[H , ρ] +

∑
j

γjD[âj]ρ + κD[â†j âj]ρ, (1.15)

where H is the Hamiltonian (Equation 1.4) and âj annihilates a boson in the jth mode.

The two superoperators represent the loss of bosons to the thermal gas (with rates γj)

and the heating of the system, resulting in a loss of phase coherence (with a rate κ). If

the atom losses are solely due to interactions with the thermal gas, then all the γj are

equal, and γ and κ are functions of the gas temperature, its chemical potential, and the

trapping potential (Anglin, 1997). But we will be concerned with the general case, in

which additional losses are introduced in a controlled manner, and γj � κ for some j.

In Appendix D we derive another master equation, describing the dissipative bosonic

dimer model of the magnetron discussed in Chapter 4.
4An operator L̂ on a normed vector space is bounded if ‖L̂v ‖ < M ‖v ‖ for some M ∈ R and all vectors

v in the space. Although Lindblad (1976) proved the necessity of this condition for a physical master
equation, Wiseman and Milburn (2010, p .119) point out that it is often violated by operators of interest in
practice. This inconsistency remains an open problem.
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1.4.2 Quantum jump method

For small systems, the master equation can be integrated directly. But if the Hilbert space

dimension is large, it may be preferable to use a Monte Carlo approach known as the

quantum jump or Monte Carlo wave function method (Dalibard et al., 1992; Carmichael,

1993; Plenio and Knight, 1998). The quantum jump method simulates a stochastic process

in Hilbert space for which the expectation values of all observables (averaged over real-

izations of the stochastic process) are the same as for the original Born–Markov equation.

The advantage of this approach is that only the wavefunction, a vector in Hilbert space

of dimension N , must be stored and operated upon, rather than the full density matrix

of dimension N 2. In this section, we derive the quantum jump algorithm and discuss its

implementation and performance.

1.4.2.1 Quantum measurement theory

The quantum jump algorithm can be derived by viewing the system-bath interaction from

a quantum measurement theory perspective (Wiseman and Milburn, 2010). Although

this can be done at a high level of generality, we will consider the speci�c case of a

Bose–Hubbard system subject to atom loss. The central idea is to consider the loss of an

atom from a well as a measurement performed on the system: by detecting the loss, we

gain information about the system, because we learn that immediately before detection

the well contained at least one atom. In quantum measurement theory, a measurement

process is described in terms of measurement operators {M̂r }, such that the state of the

system (conditional on the measurement result being r ) is,

��ψr (t + dt )
〉
=

M̂r
��ψ (t )

〉
√
pr

, (1.16)



12

where pr is the probability of the measurement result being r ,

pr =
〈
ψ (t )�� M̂†r M̂r

��ψ (t )
〉
. (1.17)

In the case of a M-well Bose–Hubbard system leaking atoms, we have M possible mea-

surement results, corresponding to an atom decaying from well 1, 2, . . . , M , and the mea-

surement operators are proportional to the annihilation operators,

M̂r = âr

√
γr dt , r ∈ {1, 2, . . . ,M }. (1.18)

Less obviously, there is one more possible measurement result: we may not detect an

atom between times t and t + dt . This null result also has a corresponding operator,

M̂0. Based on Equation 1.16 one might expect that this operator is proportional to the

identity: the system has not been a�ected. However, the probabilities of the measurement

outcomes (Equation 1.17) must add up to 1 for an arbitrary wavefunction. This means,

M̂0 = 1̂ − *
,
ıĤ +

1
2

∑
r

γr â
†
r âr

+
-
dt , (1.19)

for some Hermitian operator Ĥ . (As we will see shortly, to recover the Born–Markov

master equation of the previous section we must let Ĥ be the Hamiltonian.5) The curious

fact that M̂0 , 1̂ can be interpreted as follows: the absence of a removal event reveals

information about the system, changing the probability distribution over the well occu-

pation numbers and so altering the wave functions. Intuitively, if strong dissipation is

applied to a well and yet no atoms are ejected from it, the well is likely to be empty. Alter-

natively, in the context of a Bose–Hubbard model, one may interpret the suppression of
5This can already be intuited, since in the dissipationless case d

dt
��ψ (t )

〉
= −ıH ��ψ (t )

〉
, a special case of

Equation 1.16 with M̂0 = −ıĤdt .
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tunneling into the dissipative well as a manifestation of the quantum Zeno e�ect (Cirac

et al., 1994). See Section 3 of Mølmer et al. (1993) for a more detailed discussion and

references devoted speci�cally to this paradoxical “null measurement” phenomenon.

If we perform a measurement on the system and observe the outcome to be r , it

follows from Equation 1.16 that the system’s density matrix is now given by,

ρr (t + dt ) =
M̂rρM̂

†
r

pr
. (1.20)

But if we perform the measurement and do not observe the outcome, our knowledge of

the system’s state is described by the weighted average,

ρ (t + dt ) =
∑
r

prρr =
∑
r

M̂rρM̂r
†
. (1.21)

In the case of the leaky Bose–Hubbard model,

ρ (t + dt ) =

1̂ − *

,
ıĤ +

1
2

∑
r

γr â
†
r âr

+
-
dt


ρ


1̂ − *

,
−ıĤ +

1
2

∑
r

γr â
†
r âr

+
-
dt


+

∑
r

ârρâ
†
r dt

= ρ − ı[H , ρ]dt +
∑
r

D[âr ]ρ dt ,

or,
dρ

dt
= −ı[H , ρ] +

∑
r

D[âr ]ρ.

Thus, the Born–Markov equation describes the evolution of the system under a contin-

uous measurement, the results of which are not observed. Although the microscopic

measurement process involves discontinuous jumps (Equation 1.16), we average over

them because their timing is random, obtaining a continuous evolution equation for a

probabilistic description of the state of the system. In this sense, the master equation is

analogous to a Fokker–Planck equation.
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But to every Fokker–Planck equation corresponds a Langevin equation, a stochastic

di�erential equation for individual trajectories. Similarly, we can describe the measure-

ment process in terms of a stochastic di�erential equation for the wavefunction. Let

Nr (t ) be the number of atoms which have decayed from well r , and dNr (t ) a stochastic

increment which satis�es,

dNr (t )
2 = dNr (t ),

E[dNr (t )] = pr .

From Equation 1.16,

��ψr (t + dt )
〉
=

âr ��ψ
〉
(t )√

〈â†â〉(t )
r , 0, (1.22)

and (expanding a denominator to �rst order in dt ),

��ψ0(t + dt )
〉
= *

,
1̂ − *

,
ıH +

1
2

∑
r

â†r â −
1
2

∑
r

〈â†r âr 〉(t )
+
-
dt+

-
��ψ (t )

〉
. (1.23)

The wavefunction evolves according to the stochastic Schrödinger equation,

d ��ψ (t )
〉
= *

,
1̂ −

∑
r

dNr (t )+
-
dt *

,
−ıH −

1
2

∑
r

â†r â +
1
2

∑
r

〈â†r âr 〉(t )
+
-

��ψ (t )
〉

+
∑
r

dNr (t ) *
,

âr√
〈â†â〉(t )

− 1̂+
-

��ψ (t )
〉
,

(1.24)

or equivalently,

d ��ψ (t )
〉
= dt *

,
−ıH −

1
2

∑
r

â†r â +
1
2

∑
r

〈â†r âr 〉(t )
+
-

��ψ (t )
〉

+
∑
r

dNr (t ) *
,

âr√
〈â†â〉(t )

− 1̂+
-

��ψ (t )
〉
.

(1.25)
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The basic idea behind the quantum jump algorithm is to repeatedly solve this equation

numerically (with di�erent realizations of the stochastic increment) and estimate ρ (t ) as

the average of ��ψ (t )
〉 〈
ψ (t )�� over the realizations.

1.4.2.2 Algorithms for the stochastic Schrödinger equation

The simplest method for simulating the stochastic Schrödinger equation of the previous

section is the following procedure due to Mølmer et al. (1993). We start with a simulation

time interval [0, T ] and an initial state described by a wavefunction ��ψ (t = 0)
〉
. The time

interval is divided into time steps δt . At each time step, we do the following:

1. Evolve the state with the operator,

U = exp
(
(M̂0 − 1̂)δt

)
,

which solves Equation 1.16 in the null case when no measurement occurred. Note

that in the absence of dissipation (γj = 0∀j) this reduces to ordinary time evolution,

as (M̂0 − 1̂) is then ıH .

2. Draw a random number x ∼ U (0, 1) and compare it to,

p =
∑
r

γr
〈
ψ �� â†r âr ��ψ

〉
δt .

If x < p, draw another random numbery ∼ U (0, 1) to choose one of the wells (with

probabilities summing to 1 and proportional to pr ) and update the wavefunction by

removing an atom from the chosen well,

��ψ
〉
→ âr ��ψ

〉
.
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This is the quantum jump.

3. Regardless of whether a jump took place or not, normalize the wavefunction.

A superior algorithm can be devised by recalling that the norm of the wavefunction

evolved with U , i.e. ‖
〈
ψ �� M̂†0M̂0 ��ψ

〉
‖2, is the probability that no jump has taken place

during the evolution (Equation 1.17). Thus, instead of evolving the wavefunction in steps

of δt and generating a random number at each time step, we can adopt the following

procedure (Breuer and Petruccione, 2002, Section 7.1.3.3):

1. Draw a random number x ∼ U (0, 1).

2. Use a standard ODE solver to integrate,

d ��ψ
〉

dt
= (M̂0 − 1̂) ��ψ

〉
, (1.26)

from the initial time to T , checking at each integration step whether the norm

‖〈ψ |ψ 〉‖2 > x .

3. If ‖〈ψ |ψ 〉‖2 < x at any time step, perform a quantum jump: ��ψ
〉
→ âr ��ψ

〉
, with r ∈

{1, 2, . . . ,M } chosen at random with probabilities proportional to γr
〈
ψ �� â†r âr ��ψ

〉
.

Then, restart the procedure with the current time and wavefunction as the initial

conditions (i.e., draw a new x value and continue integrating).

Although this algorithm is faster than the naive one, it su�ers from a potential accu-

racy issue: the timing of the jump is only determined with a precision of one integrator

time step. This will lead to a loss of precision when using a high-order or adaptive inte-

gration method, which may have large intervals between time steps. The problem can be

solved using a “trick” developed by Henon (1982) in the context of computing Poincaré

maps, a task which also requires determining the time when some function of the ODE
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solution takes on a speci�ed value to a precision greater than the integration time step.

Call this time we wish to determine τ . Henon’s “trick” in the context of our problem

works as follows:

1. Let the integrator that evolves the wavefunction in time also evolve its norm. When

the norm falls below the prescribed value, the integrator returns. This gives an

(over)estimate of τ good to approximately one time integration step.

2. Next, perform a change of variables: let the wavefunction norm, rather than the

time, be the independent variable. Evolve the system back to the (nearby) point

where norm = 0. This gives an estimate of τ good to the precision of the integrator

(i.e., as good as the estimates of the other observables).

For a more detailed description see the implementation of the quantum jump algorithm

in Appendix A, or Henon’s original paper.

In closing, we make a few remarks about the performance of the quantum jump algo-

rithm relative to the direct integration of the master equation. For a system with a Hilbert

space dimension N , direct integration requires solving O (N 2) coupled ODEs, which in-

volves O (N 4) scalar multiplications per time step and requires O (N 2) memory to store

the density matrix. In contrast, the quantum jump algorithm solves O (N ) coupled ODEs

K times; therefore, the number of operations required is O (N 2K ), and the amount of

memory required is O (N ). For a system with tens of thousands of dimensions, K ≈ N is

generally su�cient, givingO (N 3) performance. However, theK trajectories can be easily

computed in parallel, so this seriously understates the gain in performance. Furthermore,

the decreased memory footprint is critical: for a system with a Hilbert space dimension

of N = 105, a dense double-precision density matrix would require 75 GB of memory to

store, while the wavefunction is smaller than 1 MB. As long as only expectation values
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of observables are desired, the full density matrix need never be computed; they can be

found by averaging the expectation values for individual trajectories,

Tr(ρÂ) = E[
〈
ψ �� Â ��ψ

〉
].

This is the approach we have taken in our simulations.



Chapter 2

Dynamical tunneling in the Bose–Hubbard

dimer

In this chapter we engage in a closer study of the mean-�eld approximation in the case of

the two-site Bose–Hubbard (BH) model. We give a more careful derivation of the mean-

�eld approximation, and review its dynamics with a focus on the onset of self-trapping.

We then develop a semiclassical description of the breakdown of self-trapping as the

number of atoms becomes small.

This chapter is partially based on work published as Pudlik et al. (2014).

2.1 The Hamiltonian and SU (2) coherent states

In this chapter, we will study the Bose–Hubbard dimer, with the Hamiltonian,

Ĥ = −J (â†1â2 + â
†

2â1) +
U

2
(
n̂1(n̂1 − 1̂) + n̂2(n̂2 − 1̂)

)
. (2.1)

where n̂i ≡ â†i âi . The Hamiltonian commutes with the total boson number operator

N̂ = n̂1 + n̂2. Consequently, using the identity,

(
N̂ 2 + (n̂1 − n̂2)

2)
)
− N̂ = n̂1(n̂1 − 1̂) + n̂2(n̂2 − 1̂),
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and dropping terms proportional to N̂ , which do not a�ect the dynamics, we can rewrite

the Hamiltonian as,

H = −J (â†1â2 + â
†

2â1) +
U

2
(n̂1 − n̂2)

2. (2.2)

The operators appearing in the Hamiltonian can be combined to form an su(2) algebra,

L̂x =
1
2
(â†1â2 + â

†

2â1),

L̂y =
ı

2
(â†1â2 − â

†

2â1),

L̂z =
1
2
(â†2â2 − â

†

1â).

(2.3)

In terms of these operators, Equation 2.2 takes the concise form,

H = −2J L̂x + 2U L̂2
z . (2.4)

Rewritten this way, the Bose–Hubbard dimer is equivalent to the γz = 0 case of the

Lipkin-Meshkov-Glick model (Lipkin et al., 1965; Meshkov et al., 1965; Glick et al., 1965),

HLMG = hLz + γxL
2
x + γzL

2
z . (2.5)

Furthermore, from Equation 2.4 it is manifest that the dynamical group of H is SU (2).1

This fact can be used to construct a family of symmetry-adapted coherent states (Zhang

et al., 1990), the SU (2) coherent states, which we introduce next.

Given the total number of bosons N , a basis for the Hilbert space is provided by the

Fock states,

|n1,n2〉 =
1

√
n1!n2!

(â†1 )
n1 (â†2 )

n2 |0, 0〉 , (2.6)

1The dynamical group of a system is the group corresponding to the Lie algebra spanned by a complete
set of operators in terms of which one can write the Hamiltonian.
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where |0, 0〉 represents the vacuum state. These states provide a convenient basis for

numerical work, but are not typical of the experiments described in the �rst chapter. In

particular, a Bose–Einstein condensate is represented by states of the form,

|x1,x2〉c =
1
√
N !

(x1â
†

1 + x2â
†

2 )
N |0, 0〉 . (2.7)

These states are equivalent to SU (2) or atomic coherent states (Arecchi et al., 1972) and

form a foundation for the development of phase-space methods and approximations (Brif

and Mann, 1999). In particular, they can be used to derive exact equations for the evo-

lution of quasiprobability distributions such as the Husimi Q and Glauber-Sudarshan P .

The mean-�eld model can be recovered from these equations by (a) dropping the second-

order quantum di�usion terms, which decrease in amplitude relative to the �rst-order

terms like 1/N as the particle number increases, and (b) approximating the quasiprob-

ability distribution with a Gaussian of width ∼ 1/N centered at its mean. We will not

discuss this fascinating perspective further here, but refer the interested reader to the

works of Trimborn et al. (2008a,b, 2009).

2.2 The mean-�eld approximation

If the number of atoms per mode is large, the dynamics of the Bose–Hubbard model

can be approximately described by mean-�eld equations. We have already discussed the

historical derivation of this model through the GP equation. An alternative approach is

to start with the Bose–Hubbard Hamiltonian of Equation 2.1 and perform a replacement

of operators with c numbers,

âj → ψj

â†j → ψ ∗j

(2.8)
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To avoid ambiguities, the Hamiltonian must �rst be symmetrized (Graefe and Korsch,

2007; Mossmann and Jung, 2006). After dropping constant terms, this procedure yields

the classical Hamiltonian,

H = −J (ψ ∗1ψ2 +ψ
∗
2ψ1) +

U

2
( |ψ1 |

4 + |ψ2 |
4), (2.9)

with equations of motion,

ı~
∂ψj

∂t
=
∂H

∂ψ ∗j
,

ı~
∂ψ ∗j

∂t
= −
∂H

∂ψj
.

(2.10)

The symmetrized number operators satisfy,

N̂ = n̂1 + n̂2 = n̂
s
1 + n̂

s
2 − 1̂,

which after the replacement of Equation 2.8 becomes |ψ1 |
2 + |ψ2 |

2 − 1 = N . Thus,

to normalize the coordinates, we perform the transformation to new coordinates φj =

ψj/
√
N + 1. The canonical equations of motion are preserved if the Hamiltonian takes

the form,

H = −J (φ∗1φ2 + φ
∗
2φ1) +

U (N + 1)
2

( |φ1 |
4 + |φ2 |

4).

Setting Λ = U (N + 1)/2J and de�ning a dimensionless time τ = 2Jt/~, we get the

dimensionless Hamiltonian,

H = −
1
2
(φ∗1φ2 + φ

∗
2φ1) +

Λ

2
( |φ1 |

4 + |φ2 |
4). (2.11)



23

The corresponding canonical equation of motion,

ı
∂φj

∂τ
=
∂H

∂φ∗j
= −

φ−j

2
+ Λ|φj |

2φj ,

is the two-mode variant of the DNLS equation (Equation 1.12). If we perform an amplitude-

phase decomposition φj =
√
xj exp(ıθj ) followed by the canonical transformation,

(z,Z ,ϕ′,Φ) =

(
x1 − x2,

x1 + x2

2
,
θ1 − θ2

2
,θ1 + θ2

)
,

we can bring the Hamiltonian into the form (Graefe and Korsch, 2007),

H =
Λz2

4
−

1
2
√

1 − z2 cos 2ϕ′. (2.12)

Finally, we perform a transformation to coordinates (z,ϕ), where ϕ = 2ϕ′. This transfor-

mation is not canonical, as it does not preserve phase space volume, but it is canonoid

with respect to H (Jose and Saletan, 1998, p. 233): the equations of motion in the new

coordinate system are still Hamilton’s equations for some Hamiltonian. That new Hamil-

tonian is the one used by Raghavan et al. (1999),2

H =
Λz2

2
−
√

1 − z2 cosϕ . (2.13)

These transformations reveal that the system has only one degree of freedom, rather than

the two one might have expected from Equation 2.11. Physically, this re�ects the facts

that the overall phase of the mean-�eld wavefunctionsφj has no signi�cance, and that the

number of atoms |φ1 |
2 + |φ2 |

2 = x1 + x2 = 2Z is conserved. The variables that do appear

in the Hamiltonian represent the population (z) and phase (ϕ) di�erences between the
2Note that the new Hamiltonian cannot be obtained simply by replacing 2ϕ ′ with ϕ in the old Hamil-

tonian, as would be the case if the transformation were canonical.
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Figure 2.1: The phase portrait of the BJJ model at di�erent values of the parameter Λ. The self-
trapping region is shown in red, and the stable �xed points as red dots. The unstable �xed point
is marked with a blue cross.

two modes. Mathematically, the phase space of the DNLS Hamiltonian of Equation 2.11

is the complex projective space CP1, which is isomorphic to the sphere. The coordinates

z and ϕ are cylindrical coordinates for this sphere.

To avoid confusion with the GP equation (Equation 1.8), which is also obtained via a

mean-�eld approximation, we will refer to the mean-�eld model of Equation 2.13 as the

bosonic Josephson junction (BJJ) model.

2.3 Dynamics of the BJJ model

The phase portrait of the BJJ model at di�erent values of Λ is shown in Figure 2.1. For Λ <

1, the system has two stable �xed points, centers at (z,ϕ) = (0, 0) and (0,π ); when Λ =

0, the periodic motion around them corresponds to Rabi oscillations of N independent

particles. The model exhibits a bifurcation at Λ = 1:3 as Λ is increased beyond this critical
3The general bosonic Josephson junction undergoes a Hamiltonian saddle-node bifurcation (Howard,

2013) when the nonlinearity is increased. At the bifurcation, a new elliptically stable �xed point (center)
and a hyperbolically unstable �xed point (saddle) come into being. In the special case of a symmetric dimer
the location of the bifurcation in phase space coincides with the location of an already existing elliptically
stable �xed point such that the bifurcation has the shape of a pitchfork as noted by Zibold et al. (2010).
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value, a stable center at z = 0, ϕ = π breaks down into a saddle point point at the same

coordinates and a pair of stable centers at z = ±
√

1 − 1
Λ2 , ϕ = π . These stable centers,

corresponding to a persistent population imbalance between the dimer’s two wells, are

known as the self-trapping points.

The equations of motion of the Hamiltonian of Equation 2.13 are,

dϕ

dt
=
∂H

∂z
= Λz +

z
√

1 − z2
cosϕ,

dz

dt
= −
∂H

∂ϕ
=
√

1 − z2 sinϕ .

Linearizing these equations about either of the self-trapping �xed point shows that these

�xed points are stable centers, with an oscillation frequency of f =
√
Λ2 − 1/2π , or in

dimensionful units of time,

fB J J =
J

~

√
Λ2 − 1
π

. (2.14)

How accurate is the BJJ model? Both self-trapping (Albiez et al., 2005) and the bi-

furcation at Λ = 1 (Zibold et al., 2010) have been observed experimentally. An implicit

prediction of the model is that the system remains condensed; this turns out to be accu-

rate for initial conditions near the self-trapping �xed points, but not for ones near the

separatrix (Hennig et al., 2012).

2.4 Tunneling between the self-trapping points

Within the BJJ model, the self-trapping �xed points are stable: a trajectory initially suf-

�ciently close to one of them remains close to it for all time. In the full Bose–Hubbard

dynamics, however, tunneling between the two self-trapping points occurs with a �nite

frequency. An example of this process is shown in Figure 2.2, which depicts the Husimi
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Figure 2.2: Tunneling between the self-trapping �xed points. In the BJJ model, trajectories su�-
ciently close to the self-trapping point remain con�ned to its neighborhood forever (far left panel).
However, as shown in the remaining panels, in the Bose–Hubbard model the Husimi function of
a coherent state initially centered at the z > 0 self-trapping �xed point tunnels from one �xed
point to the other. Parameters: N = 40 atoms, with Λ = 1.1 and J = 10 Hz.

function (Lee, 1995), a quasiprobability distribution over the coherent states ��z, ϕ
〉

given

by,

Qψ (z, ϕ) = ��〈z, ϕ |ψ 〉��2 (2.15)

for a pure state |ψ 〉. The Husimi function is initially centered at one of the �xed points,

but over time it tunnels to the other, and then back again.

A quantitative signature of the tunneling is an oscillation of the wells’ populations.

The frequency of this oscillation can be found by numerically integrating the Schrödinger

equation of the Bose–Hubbard dimer for a long time and computing the power spectrum

of the well populations. The most prominent feature in the spectrum corresponds to the

tunneling frequency.

Since the dynamics of the coherent state near the self-trapping �xed points appears

very simple, we may try to reduce the dimensionality of the problem by restricting the

system to some subspace of the Hilbert space. Remarkably, in the neighborhood of the
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Figure 2.3: The probability of observing the coherent state centered at the self-trapping �xed
point in one of the n most probable states, for n = 2, 3, 4, . . ., as a function of the particle number
N . (Λ = 1.025, U = 2π × 0.063 Hz.)

mean-�eld �xed points, only a few energy eigenstates contribute appreciably to the co-

herent state. 4 How many states need to be accounted for depends on the particle number

(see Figure 2.3). Our intuition is that as N increases, the “size” of the coherent state in

phase space shrinks, but the “size” of the eigenstates shrinks even faster, and ever-more

eigenstates are needed to correctly account for the coherent state dynamics. However,

even for a few hundred atoms much of the tunneling dynamics can be captured by keep-

ing just two states (see Figure 2.4). At the self-trapping �xed points, these two states are

the pair of highest energy states of the Bose–Hubbard model 5. They are symmetric and

antisymmetric combinations of states localized in each well.

The energy splitting between the symmetric and antisymmetric states agrees closely

with the oscillation frequency extracted by numerically integrating the Schrödinger equa-
4This phenomenon will be discussed in greater detail in Chapter 3. See also Chuchem et al. (2010).
5The highest energy states are the relevant ones only if Λ is positive. Self-trapped �xed points also exist

for Λ ≤ −1, but in this case the relevant states are the two lowest energy ones.
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Figure 2.4: A two-state description of the tunneling remains valid as N increases, although the
dynamics is more complex as the system becomes less discrete. The Husimi function is shown
at the �ve times spaced by a quarter of the tunneling period expected from the two-state model.
(N = 500 atoms, Λ = 1.025 and U = 2π × 0.063 Hz.)

tion. The splitting between these states can also be computed forΛ < 1; in this case, there

is only one �xed point at ϕ = π , and the energy splitting closely agrees with the BJJ fre-

quency of oscillations about that point. Both above and below Λ = 1, the BJJ limit is

approached as N is increased (see Figure 2.5).

The energies of the two highest-energy states are easily found numerically even for

very large N , but it is desirable to explain the simple trends with N and Λ shown in

Figure 2.5 using an analytical model. Quantum perturbation theory can be used to ob-

tain estimates of the tunneling frequency for small J/U ≈ N /Λ (Bernstein et al., 1990;

Salgueiro et al., 2007; Dounas-Frazer et al., 2007), but not in the region Λ ≈ 1 where

tunneling becomes a signi�cant e�ect. In the next section, we will pursue an alternative

approach.
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two-eigenstate model as the number of atoms increases. Nonetheless, a nonzero frequency is
expected for any Λ and any �nite N . In all plots, J = 10 Hz. The mean-�eld result is that of
Equation 2.14.

2.5 Semiclassical quantization

To shed light on the convergence of the results of the two-state model to those of the BJJ,

we will start with the BJJ model and recover additional features of the dynamics through

Bohr–Sommerfeld quantization. Graefe and Korsch (2007) applied Bohr–Sommerfeld

quantization to this problem numerically, obtaining excellent estimates of the eigenen-

ergies even for atom numbers N < 10. In this section, we start from their formulation

of the quantization condition but proceed analytically to produce accurate closed-form

expressions for the tunneling frequency.

The quantization condition in the self-trapping region of the symmetric dimer de-

scribed by the Hamiltonian of Eq. 2.13 is (Graefe and Korsch, 2007),

√
1 + κ2 cos(2Sw − Sϕ ) = −κ . (2.16)

Here, 2Sw is the action associated with the self-trapped classical orbit, κ = exp(−πSϵ ),
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Figure 2.6: The actions appearing in the quantization condition (Eq. 2.16) have a geometric in-
terpretation. This �gure depicts the phase space of the BJJ model for Λ = 2. The grey curves
are trajectories; the actions Sw and Sϵ for energy E = −1.15 are equal to the areas of the marked
regions. In the case of Sw , the action corresponds to the phase space area of the classical orbit.

and 2Sϵ is the (Euclidean) action associated with tunneling. Both Sw and Sϵ are measured

in units of Planck’s constant, h, and so are dimensionless. 6 The phase correction term

Sϕ can be expressed in terms of Sϵ as,

Sϕ = arg Γ
(1
2
+ ıSϵ

)
− Sϵ ln |Sϵ | + Sϵ . (2.17)

For a discussion of the physical signi�cance of Sϕ , see Child (1991, pp. 50–51).

The actions Sw and Sϵ are functions of the energy E and the nonlinearity Λ, and can

be expressed as integrals over phase space (see Figure 2.6); this is discussed in greater

detail in Appendix B.2.

Let us assume that the energy splitting between symmetric and antisymmetric combi-

nations of states localized in the two self-trapping regions of phase space is small relative

to the spacing of allowed energies in each region. As shown in Appendix B.1, in this case
6The factors of 2 are conventional: the WKB approximation, which inspired this quantization condition,

is typically expressed in terms of integrals
∫
p dx between the turning points. But

∫
p dx = 1

2

∮
p dx = S/2.
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Figure 2.7: Pairs of classical orbits and their turning points z±. The orbits on the left (Λ = 2,
E = 1.15) are librations, while those on the right (Λ = 4, E = 1.15) are rotations.

the quantization condition implies the splitting is approximately

∆E =
~ω

π
exp(πSϵ ), (2.18)

where ω is the frequency of the classical motion in a self-trapped orbit (related to the

action of the orbit Sw , since 2π/~ω = T /~ = 2∂Sw/∂E) and Sϵ is as before the Euclidean

action associated with the tunneling. These quantities depend on the shape and size of

the classical orbits, which are determined by Λ and the energy of the unperturbed state

E.

Let the classical turning points be z± (see Figure 2.7). The size of the orbits is captured

by the dimensionless parameter,

k ≡

√
z2
+ − z

2
−

z2
+

. (2.19)

Furthermore, let,

k′ ≡
√

1 − k2 =
z−
z+
, and α2 =

z2
+ − z

2
−

z2
+ − 1

.
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In Appendix B.2 we show that in terms of these quantities the splitting ∆E of the highest-

energy state is given by,

∆E =
~ω

π
exp(πSϵ )

=
~z+Λ

2K(k )
exp

(
−(N + 1)

(
−

(
1 −

2E
Λ

) 1
z+

Π(z−2
+ ,k

′) + z+ (K(k′) − E(k′))
))
,

(2.20)

where K, Π and E are the complete elliptic integrals (Olver et al., 2015, §19.2(ii)), while E is

the unperturbed energy of the highest-energy state satisfying the quantization condition,

π

N + 1
−π (1−z+) ·1 (E < Λ/2) =

(
1 −

2E
Λ

) 1
z+

(
K(k ) −

1
1 − z2

+

Π(α2,k )

)
−z+E(k ), (2.21)

with 1 (·) denoting the indicator function.

These complicated expressions constitute a solution to the problem of semiclassical

quantization but o�er little insight into the dimer’s behavior. Nonetheless, some of the

problem’s structure has become apparent:

1. The splitting depends on E and Λ only through the turning points z± and the com-

bination (1 − 2E/Λ). The sign of this last quantity distinguishes between the two

types of motion depicted in Figure 2.7: 1−2E/Λ > 0 for rotations (orbits surround-

ing one of the poles at z = ±1) and 1 − 2E/Λ < 0 for librations.

2. The only non-elementary functions in the expressions above are the complete el-

liptic integrals K, E, and Π. When they do appear they all take the same argument

(modulus), either k or k′, which is a measure of the size of the classical orbit.

This structure can be exploited to �nd much simpler expressions for the splitting, valid

in the limit of N � 1.
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Let us �rst rescale the energy through a linear transformation:

e =
(
−E +

Λ

2
+

1
2Λ

)
·
(Λ − 1)2

2Λ
, (2.22)

The rescaled energy e lies in [0, 1) for any orbit in the self-trapping region. The highest-

energy state orbit has an area h/2, while the total semiclassical action of a dimer with N

particles is h(N + 1). As N increases, both the energy e of the highest-energy state and

the dimensionless measure of orbit size k (Equation 2.19) become small. If the highest-

energy state orbit is a libration (e < (Λ − 1)−2), expanding Equation 2.21 to lowest order

in k and e and solving for e gives an estimate of the energy of the highest-energy state,

e ≈
2Λ
√
Λ2 − 1

(Λ − 1)2(N + 1)
. (2.23)

This estimate is very good: the relative error in approximating the numerical semiclas-

sical result is less than 1% for N = 20 and Λ = 1.25, and decreases with both N and Λ.

Analogous expansions for the classical orbital frequency and the tunneling phase lead to

the following expression for the ground state splitting:

∆E ≈ 2J
ω

π

( 1
ω

e−z0
) (N+1) (1−e )

, (2.24)

where z0 ≡
√

1 − 1
Λ2 is the position of the self-trapping �xed point and ω =

√
Λ2 − 1 is

the frequency of motion about it. The tunneling frequency ∆E/~ decreases exponentially

with the “barrier width” ≈ z0, the “barrier height” ≈ (1 − e ) and the number of atoms N .

The details of the calculation are described in Appendix B.3.

Figure 2.8 compares the semiclassical splitting estimates with the results of exact diag-

onalization of the Bose–Hubbard model. The results of solving the quantization problem
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Figure 2.8: Comparison of semiclassical estimates of the splitting with exact diagonalization. The
analytical approximation of Equation 2.24 (red line) agrees closely with the results of exact di-
agonalization (blue dashed line). In contrast, the approximation of Scharf et al. (1987), drawn
with a green dot-dashed line performs poorly in this low-Λ regime, especially for larger N . The
black vertical line marks the Λ value below which the semiclassical approximation breaks down
because the area of phase space associated with the self-trapped region is less than h/2.

numerically are not shown: except for Λ so small that not even one semiclassical orbit

�ts within the self-trapping region, they agree very closely with the exact Bose–Hubbard

splitting. The analytic approximation discussed in this section is generally within a fac-

tor of 2 of the exact result, and improves with N . Since the splitting changes by as many

as 15 orders of magnitude over the investigated range of Λ, this agreement amounts to

remarkably robust performance.

A di�erent closed-form semiclassical approximation to ∆E was obtained by van Hem-

men and Sütö (1986) and re�ned by Scharf et al. (1987). This last approximation attains

an excellent accuracy, on the order of a few percent, but only for U ≈ J . In the context

of cold atomic experiments, in which the atom number is on the order of hundreds, this

corresponds to very small tunneling frequencies (well below 10−100 Hz). For U � J ,

where the tunneling frequency becomes large, the approximation of Scharf et al. (1987)

is many orders of magnitude from the true value (see Figure 2.8). Therefore, the ap-

proximation we provide in Equation 2.24 is the �rst closed-form expression valid in the
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experimentally-relevant regime.

2.6 Applications

In this section, we consider the implications of the analysis presented above for three

problems: determining the time scale for macroscopic entanglement, producing quantum

speedup of dissipation, and obtaining experimental con�rmation.

2.6.1 Time scale for macroscopic entanglement

Tunneling in the self-trapping regime leads to the generation of entangled superpositions

of many-particle states, or macroscopic entanglement (Carr et al., 2010). The entangle-

ment between the two modes is maximized at timesT /4 and 3T /4, whereT is the tunnel-

ing period. Therefore, our semiclassical estimate of the tunneling frequency immediately

yields an estimate of the time required for entanglement generation. It is notable that the

dynamics of entanglement, a profoundly unclassical phenomenon, is captured by the �rst

quantum correction to the (classical) BJJ model.

2.6.2 Quantum speedup of dissipation

So far we have considered only an isolated Bose–Hubbard dimer. In this section we brie�y

discuss the central role tunneling in the self-trapped regime plays in a quantitatively

accurate model of a dissipative dimer that leaks atoms to the environment.7

Consider a coherent state ofN bosons centered at one of the self-trapping �xed points,

say the left well. We will attempt to model its dynamics within a two-dimensional sub-

space of the full system’s Hilbert space, the subspace spanned by the symmetric and an-

tisymmetric energy eigenstates, |ES〉 and |EA〉. In the basis of states localized in the two
7For a discussion of the e�ect of dissipation at large nonlinearities UN /2J � 1, when the tunneling

becomes slow and is dominated by other e�ects, see the next chapter.
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wells, |1〉 = ( |ES〉 + |EA〉)/
√

2 and |2〉 = ( |ES〉 − |EA〉)/
√

2, the Hamiltonian is represented

by the matrix,

*..
,

Ē ∆E

∆E Ē

+//
-

where Ē = (ES + EA)/2 and ∆E = (ES − EA)/2. These parameters can be calculated semi-

classically with high accuracy as we have shown in the preceding section (Equation 2.23

and Equation 2.24), though we use exact values in the simulation discussed below. The

initial condition is the localized state |1〉. Now, assume there is decay from the right well

at a rate γ . In the two-level model this is described by the e�ective decay rates,

Γ1 = −γ 〈1| â†2â2 |1〉 , Γ2 = −γ 〈2| â†2â2 |2〉 ,

leading to the e�ective Hamiltonian,

H (2)
e� =

*..
,

Ē − ıΓ1/2 ∆E

∆E Ē − ıΓ2/2

+//
-
. (2.25)

This simple model can be used to estimate how the probability of all N atoms remaining

in the system diminishes over time. To evaluate the results, we compare them to those

obtained using the complete coherent state and the full master equation of Section 1.4.1,

˙̂ρ = −ı[Ĥ , ρ̂] −
γ

2
(
â†1â1ρ̂ + ρ̂â

†

1â1 − 2â1ρ̂â
†

1

)
. (2.26)

The probabilities of remaining in theN atom subspace predicted using the two Hamil-

tonians are shown in Figure 2.9. If many-body tunneling between the �xed points is ne-

glected (∆E = 0), the rate of atom loss is signi�cantly underestimated. But when the

correct value of ∆E is used, the e�ective two-state model produces results almost indis-
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Figure 2.9: Correctly estimating the rate of tunneling between the self-trapping �xed points is
critical to predicting the atom loss rate from a leaky dimer. The probability of �nding all N atoms
in the system over time is plotted for three di�erent models. The dashed green line is the simple
Hamiltonian of Equation 2.25, based only on two parameters Ē and ∆E which can be calculated
semiclassically. It overlaps with the numerically exact results obtained by integrating the many-
body master equation of Equation 2.26 (solid blue line). The simple model with ∆E set to zero
di�ers signi�cantly (dotted red line). (J = 1 Hz, U = 4/5 Hz, N = 6)

tinguishable from the full Bose–Hubbard. Remarkably, we can thus reproduce the decay

dynamics of a correlated many-body system using only two parameters, Ē and ∆E, which

can be calculated semiclassically.

2.6.3 Prospects of experimental observation

The BJJ dynamics of the BEC dimer was experimentally mapped out in great detail a few

years ago by Zibold et al. (2010). Could a similar experiment observe tunneling between

the �xed points for Λ > 1?

As we mentioned in Section 1.3.2, experimental realizations of the dimer fall into

two categories: “external” and “internal” (Leggett, 2001), or those utilizing two spatially

separated wells and those using two internal states of atoms. Correctly describing the dy-

namics of the spatially separated wells requires going beyond the Bose–Hubbard model
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Figure 2.10: Frequency of tunneling between the �xed points versus Λ forU = 2π ×0.063 Hz and
N = 500, the experimental parameters of Zibold et al. (2010). The mean-�eld prediction is also
shown for reference.

that was our starting point in this work, as the localized orbitals associated with the

operators âi , â†i are time-dependent Sakmann et al. (2009). Fortunately, this complica-

tion does not arise in the case of internal states (Zibold, 2012). Therefore, the tunneling

and dissipation enhancement e�ects we have described are most likely to be observed in

experiments relying on internal states.

The expected tunneling frequency given the experimental parameters of Zibold et al.

(2010) is shown in Figure 2.10. The frequency is on the order of a few Hertz. Since the

atom decay times reported in this experiment are ∼ 100 ms, the tunneling frequency is

too small to be observed at present. However, an order of magnitude improvement in

atom retention times would render experimental observation feasible.

At �rst glance, it may seem that the retention time limitation could be sidestepped by

lowering both N and J by the same factor. Since the quantum tunneling time depends on

N exponentially, but on J only linearly (Equation 2.24), this could speed up the semiclas-

sical dynamics while keeping Λ constant. Unfortunately, the experiment of Zibold et al.

(2010) was already carried out at the lowest J currently accessible: lowering it even more
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introduces unacceptable noise due to electromagnetic �uctuations. 8

2.6.4 Beyond the dimer: semiclassical quantization for lattices

Although our analysis was limited to the dimer, analogous processes should occur in

a system with multiple states, only one of which has an appreciable population. The

Bose–Hubbard Hamiltonian can be straightforwardly extended to such systems; in the

case of the trimer, self-trapping has been demonstrated in both the quantum model and

its classical limit (Mossmann and Jung, 2006; Hennig et al., 2010). However, carrying

out semiclassical quantization is di�cult because the classical model is now chaotic. So

far, progress has only been made for the case of very small and very large J/U (Itin and

Schmelcher, 2011), i.e. precisely the region of parameter space where tunneling between

the self-trapping points does not take place. Therefore, the extension of our results be-

yond the dimer is likely to prove challenging.

2.7 Summary & Outlook

In this chapter we have studied the tunneling between the self-trapped �xed points of the

BEC dimer using a semiclassical approach. We derived an exact solution to the problem in

terms of elliptic integrals giving the phase space areas of semiclassical orbits. For particle

numbers N � 1, the semiclassical ground state orbit and (appropriately transformed)

energy become small; in this limit we found an approximate closed-form expression for

the tunneling frequency that is accurate in the experimentally relevant parameter range.

The tunneling frequency decreases exponentially with the e�ective width and height of

barriers in phase space, as well as the number of particles. Nonetheless, accounting for

the tunneling is crucial to obtaining quantitatively accurate estimates of atom loss rates
8We thank Wolfgang Muessel for private communication on this point.
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in a leaky dimer.



Chapter 3

Dynamics near the self-trapping �xed points

of the Bose–Hubbard dimer

In the previous chapter, we investigated corrections to the mean-�eld dynamics of the

Bose–Hubbard dimer when the nonlinearity is relatively weak,UN /2J & 1. In this chap-

ter, we focus on the regime of stronger nonlinearity, when tunneling no longer plays an

important role. We study the connection between the semiclassical phase space and in-

herently quantum phenomena such as entanglement and dissipation-induced coherence.

Near the semiclassical self-trapping �xed points, the dynamics of EPR entanglement and

condensate fraction consists of beats among just three eigenstates. Since persistent EPR

entangled states arise only in the neighborhood of these �xed points, our analysis ex-

plains essentially all of the entanglement dynamics in the system. We derive accurate

analytical approximations by expanding about the strong-coupling limit; surprisingly,

their realm of validity is nearly the entire parameter space for which the self-trapping

�xed points exist. Finally, we show signi�cant enhancement of entanglement can be

produced by applying localized dissipation.

This chapter is partially based on work published as Pudlik et al. (2013).
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3.1 Entanglement and coherence

In addition to the expectation values 〈z〉 and 〈ϕ〉 studied in the previous chapter, we will

investigate the dynamics of two quantities that do not have a mean-�eld counterpart. The

�rst is the condensate fraction or purity, de�ned as the largest eigenvalue of the single-

particle density matrix,

ρ =
*..
,

〈â†1â1〉 〈â
†

1â2〉

〈â†2â1〉 〈â
†

2â2〉

+//
-
.

The condensate fraction measures how close the many-body state is to a pure BEC (Wit-

thaut et al., 2008; Trimborn et al., 2009). The second quantity of interest is the observable

introduced by Hillery and Zubairy (2006); He et al. (2011),

EPR = 〈â†1â2〉〈â
†

2â1〉 − 〈â
†

1â1â
†

2â2〉. (3.1)

This observable quanti�es the entanglement between the two modes of the dimer: the

modes are said to be EPR-entangled whenever EPR > 0. This entanglement criterion

has two advantages: it is experimentally accessible, and applies to dissipative as well as

closed systems.

Although these quantities have no mean-�eld analogs, prior work (Hennig et al., 2012)

showed a strong in�uence of the mean-�eld phase portrait on their dynamics. Speci�-

cally, the condensate fraction remains large near all of the stable �xed points while EPR

entanglement is found only near the z , 0 �xed points (see Figure 3.1).

This so-called “global phase space picture” suggests a new method for generating EPR

entanglement in the Bose–Hubbard dimer: driving the system closer to the mean-�eld

�xed points using controlled atom loss. Since the mean-�eld dynamics is particularly

simple near the �xed points, one might hope the full quantum dynamics to be simple as
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Figure 3.1: The global phase space picture of the BEC dimer. (a) Mean-�eld trajectories. (b)
The expectation values of z and ϕ over time (phase space trajectory) for an initially coherent
state close to the stable �xed point. The phase trajectory is drawn in blue; nearby mean-�eld
trajectories are in grey. Note that the actual trajectory has a “thickness” associated with it—a
phenomenon beyond the mean-�eld description. (c) The condensate fraction after 1 second of
evolution, for initially coherent states uniformly sampled in z and ϕ: condensate fraction remains
high for initial conditions in the neighborhood of the stable �xed points. (d) EPR entanglement
for initially coherent states after 1 second of evolution: the only states still EPR entangled are
those initially very near the self-trapping �xed points. All plots are for N = 40, J = 10 ~/s and
U = 100/39 ≈ 2.6 ~/s, so Λ ≈ 5.3.
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Figure 3.2: The condensate fraction and EPR entanglement over time for an initially coherent (z =
0.95, ϕ = π ) state of the Bose–Hubbard dimer with N = 40, J = 10 ~/s and U = 100/39 ≈ 2.6 ~/s,
so Λ ≈ 5.3. The stable �xed point is at z ≈ 0.98, ϕ = π . Results obtained by numerical integration
of the Schrödinger equation.

well, allowing for a clear yet quantitative understanding. To develop such an understand-

ing, in Section 3.2 we describe the full quantum dynamics of the Bose–Hubbard dimer

near the mean-�eld �xed points, and in Section 3.3 consider the e�ects of controlled atom

loss on this dynamics.

3.2 Dynamics near the self-trapped �xed points

Let us consider the behavior of the system near the self-trapping �xed points, located at

z = ±
√

1 − 1/Λ2, ϕ = π . In their neighborhood the observables de�ned in the previous

section exhibit peculiar dynamics, the most striking feature of which is the presence of

two distinct frequencies (see Figure 3.2).

The higher frequency is expected on the basis of the bosonic Josephson junction

model of Section 2.2. Recall that linearizing the equations of motion obtained from the
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Figure 3.3: The high frequency observed near the �xed point for di�erent values ofΛ (blue circles),
on a log-log scale. The mean-�eld prediction (green line) is consistent with the numerically exact
results. TheO (Λ−2) perturbative result (show in red) agrees with the mean-�eld down to Λ = 1.5,
below which it overestimates the frequency; see Section 3.2.2 for a discussion.

Hamiltonian of Equation 2.13 about the �xed point yields (cf. Equation 2.14),

fBJJ =

√
Λ2 − 1
π

J

~
. (3.2)

This mean-�eld prediction works for a broad range of Λ (see Figure 3.3). The lower fre-

quency, however, cannot be explained within the BJJ approximation. To see this, consider

the trajectory of the system in z, ϕ space (see Figure 3.1(b)). In the BJJ model, this tra-

jectory is expected to coincide with an energy contour of the Hamiltonian. However,

simulation of the full quantum dynamics reveals a “thick” orbit, the size of which oscil-

lates with the low frequency.1

1Similar low frequency phenomena were noted before by Milburn et al. (1997), but not discussed quan-
titatively.
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3.2.1 Eigenstate decomposition

To explain the low frequency oscillations, let us decompose the evolving quantum state

into the energy eigenstates:

��ψ (t )
〉
=

N∑
n=0

an e−ıEnt/~ |En〉 . (3.3)

At �rst glance, this decomposition does not o�er much insight, as the Hamiltonian has a

large number of eigenstates and their energies can only be found numerically. However,

in the neighborhood of the system’s �xed points only a few states contribute appreciably

to the wave function (see Figure 3.4). This is not entirely surprising: the stable �xed

points are the extrema of the mean-�eld energy, so in the neighborhood of these points

only the eigenstates with most nearly extremal energy values should contribute to the

coherent state. Indeed, for the z = 0.95, ϕ = π coherent state of Figure 3.2, we �nd the

contributions of the three highest-energy eigenstates to be,

a0 = 0.9353 E0 = 2040 ~/s

a1 = 0.3474 E1 = 1942 ~/s

a2 = 0.0653 E2 = 1850 ~/s.

These three eigenstates together account for,

|a0 |
2 + |a1 |

2 + |a2 |
2 = 0.9997
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Figure 3.4: A projection onto just 3 eigenstates is e�ective near the BJJ �xed points. Consider a
coherent state ��z, ϕ

〉
=

∑N
n=0 an |En〉 and its projection ��ψ ′

〉
=

∑2
n=0 an |En〉 onto the three energy

eigenstates with the largest coe�cients an in the energy eigenstate expansion. The plot above
shows the norm |〈ψ ′ |ψ ′〉|2 of this projection as a function of z and ϕ. Note that the norm of the
projection is nearly 1 (perfect) near all of the �xed points, including the unstable one, suggest-
ing the three-eigenstate description will be informative for those initial conditions. The system
parameters are the same as those in Figure 3.2, namely J = 10 ~/s, Λ ≈ 5.3 and N = 40. The
mean-�eld stable �xed points are at z = 0, ϕ = 0 and at z = ±0.98, ϕ = π , while the unstable �xed
point is at z = 0, ϕ = π . Contours of constant mean-�eld energy are shown in white.
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of the probability weight of the coherent state. We might therefore expect the frequencies

observed in the data to be beats between the eigenstates,

(E0 − E1)/2π = 15.56 Hz ≡ ffast

(E1 − E2)/2π = 14.64 Hz

(E0 − E2)/2π = 30.23 Hz

or perhaps higher-order beats, such as

E0 − E1

2π
−
E1 − E2

2π
= 0.8805 Hz ≡ fslow.

These expectations are borne out: 16.4 Hz ≈ ffast is the BJJ frequency given by Eq. 3.2,2

while 0.85(5) Hz is the measured frequency of the large-amplitude oscillation in Fig-

ure 3.2. The two other beats are also seen in the power spectrum of the condensate

fraction (at 14.65(5) Hz and 30.27(5) Hz), though not in that of EPR.

The projection onto the three most important eigenstates recovers not only the fre-

quencies but essentially all of the observables’ dynamics (see Figure 3.5). A projection

onto just two states is su�cient to recover the mean-�eld motion, but not the low fre-

quency oscillations.
2The 5% discrepancy between the BJJ frequency and the fast frequency observed in the data will be

discussed in the next section.



49

0.9985

1

c
o
n
d
e
n
s
a
te

fr
a
c
ti
o
n

0 1 2 3 4 5
−2

−1

0

1

E
P

R

time (seconds)

Figure 3.5: Validity of the two-frequency approximation. The condensate fraction and EPR en-
tanglement calculated by approximating the initial coherent state with only 3 eigenstates (blue)
is virtually indistinguishable from the numerically exact results shown in Figure 3.2. An approx-
imation with only 2 eigenstates (green) reproduces the fast, but not the slow oscillations.

3.2.2 J → 0 limit

To gain more insight into the two frequencies, consider the limit J → 0 in which the

Hamiltonian can be diagonalized exactly 3. The eigenstates are the Fock states,

|N1, N − N1〉 ≡ |N1〉 ,

and the associated energies are,

ϵN1 =
N1(N1 − 1)

2
U +

(N − N1) (N − N1 − 1)
2

U , (3.4)

which we denote with ϵ rather than E to distinguish the J → 0 limit from the general

case. Note the N1 → N−N1 twofold degeneracy of the spectrum, re�ecting the symmetry
3Strictly speaking, the Bose–Hubbard dimer can be analytically solved in the J , 0 case: a solution

based on the Bethe ansatz was developed in the early 1990s (Enol’skii et al., 1991, 1992; Links et al., 2003;
Links, 2006). This solution replaces the N + 1 dimensional eigenvalue problem with a set of N nonlinear
algebraic equations. Since for generic N such equations can only be solved numerically, the Bethe ansatz
solution amounts to a restatement of our original problem.
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of the system with respect to a relabeling of the wells. The frequencies analogous to ffast

and fslow computed numerically in Section 3.2.1 are,

ϵ0 − ϵ1

2π~
=
U (N − 1)

2π~
≈ 15.9 Hz,

ϵ0 − ϵ1

2π~
−
ϵ1 − ϵ2

2π~
=

U

π~
≈ 0.82 Hz.

The J → 0 estimate of ffast coincides with the limit of the BJJ expression, up to a multi-

plicative factor of (N + 1)/(N − 1) that leads to discrepancies for small N :

fBJJ =

√
Λ2 − 1
π

J

~
=

√
U 2(N + 1)2 − 4J 2

2π~
=
U (N + 1)

2π~

√
1 −

(
2J

U (N − 1)

)2

=
U (N − 1)

2π~
N + 1
N − 1

[
1 −

1
2
Λ−2 +O (Λ−4)

]
.

(3.5)

More interesting is fslow = U /π~. The slow oscillations are a purely quantum phe-

nomenon, as U /π~ goes to zero in the classical limit of N → ∞ with Λ = U (N + 1)/2J

�xed. A �rst hypothesis might identify them with the quantum revivals, in which all of

the components of the coherent state re-phase (Greiner et al., 2002b). This is almost cor-

rect. Consider an initial state ��ψ (0)
〉

decomposed into energy eigenstates (Equation 3.3).

Evolving the state over one period τ = 1/fslow of the slow oscillation yields,

��ψ (τ )
〉
=




∑N
n=0 an |n〉 for N odd,∑N
n=0(−1)nan |n〉 for N even,

(3.6)

up to an overall phase (see Appendix C.1 for a proof). For odd N , we observe a full

revival, as expected. For N even, the relative phases of the eigenstates are altered, and

a revival occurs only after a translation by 2τ . However, the additional phases present

after a τ translation cancel when the condensate fraction and EPR are computed (see
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Figure 3.6: The slow frequency near the �xed point as a function of Λ. The numerically exact
values (blue circles) are well described by the second order perturbative results (solid red line).
Zeroth-order perturbation theory (dashed green line) slightly underestimates the frequency.

Appendix C.2 for a proof). In the limit J → 0 one therefore expects revivals in these

observables with a frequency 1/τ = U
π~ for all values of N .

Surprisingly, the J → 0 result is close to the observed frequencies even when J � U

(see Figure 3.6). To shed light on this, one may compute the shifts in the frequencies due

to J & 0 using degenerate perturbation theory; see Appendix C.3 for a derivation follow-

ing Bernstein et al. (1990). The resulting corrections to the J = 0 result are proportional

to Λ−2:

ϵ0 − ϵ1

2π~
=
U (N − 1)

2π~

[
1 −

1
2

(N + 1)3

(N − 1)2(N − 3)
Λ−2 +O (Λ−4)

]
,

ϵ0 − ϵ1

2π~
−
ϵ1 − ϵ2

2π~
=

U

π~

[
1 +

3
2

(N + 1)3

(N − 5) (N − 3) (N − 1)
Λ−2 +O (Λ−4)

]
.

(3.7)

The perturbative high frequency estimate agrees with the mean-�eld result (Equation 3.5)

in the limit of large N , as one would expect. Close to the bifurcation the mean-�eld

expression performs better than the perturbative one (see Figure 3.3), presumably because

we dropped terms of order Λ−4 and higher. But above Λ ≈ 2, the agreement of the

perturbative expressions with the observed frequencies of both the mean �eld motion

(Figure 3.3) and the quantum revival (Figure 3.6) is excellent.
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3.2.3 Region of validity

How far from the �xed point can we expect the dynamics to be dominated by the two-

frequency pattern described above? To avoid introducing additional frequencies at the

outset, the initial coherent state ��z, ϕ
〉

must have an appreciable projection onto just

three eigenstates: that is, the projection ��ψ ′
〉
=

∑2
n=0 an |En〉 must satisfy ‖〈z, ϕ |ψ ′〉‖2 =

‖〈ψ ′|ψ ′〉‖2 ≈ 1. But in addition, coherent states at every point of the the mean-�eld

trajectory must be well approximated by the three eigenstates: if ‖〈z, ϕ |ψ ′〉‖2 deviates

signi�cantly from 1 anywhere along an orbit, a breakdown of the two-frequency pattern

is expected. An instructive example of such a breakdown is observed as the system ap-

proaches the bifurcation (Λ → 1+). Although in the neighborhood of the stable �xed

points the norm of the three-eigenstate projection remains high, the orbits of the BJJ

model venture out of this neighborhood (see Figure 3.7). The true quantum dynamics

involves tunneling from one stable �xed point to the other described in Chapter 2 which

is classically forbidden and does not conform to the two-frequency paradigm described

in this section.

Thus, the two-frequency description is valid only for initial conditions in some neigh-

borhood of the stable �xed points. However, this is generally su�cient to understand the

generation of EPR entanglement: On long time scales EPR entanglement is present only

for initial conditions close to the �xed points, as shown in Figure 3.1.

What is more, the slow oscillations set the timescale for which EPR entanglement is

present in the sysem. To obtain a global picture of entanglement generation, we simu-

lated the dynamics of 10,000 initially coherent states uniformly sampled from the Bloch

sphere. In Figure 3.8 we plot, as a function of time, the fraction of these in which the

two wells are entangled. Pronounced revivals occur with the frequency fslow analyzed

above. The implication, supported by an examination of individual phase space trajec-
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Figure 3.7: Breakdown of the three-eigenstate approximation near the bifurcation. The squared
norm ‖〈ψ ′ |ψ ′〉‖2 of the projection of coherent states onto the three energy eigenstates with the
largest coe�cients in the energy eigenstate expansion is plotted, for Λ = 1.1. The mean-�eld
trajectories are overlaid in white. Note that the projection norm is not conserved along the
mean-�eld trajectories, indicating the breakdown of the mean-�eld approximation and the two-
frequency pattern.
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Figure 3.8: EPR entanglement is predominatly found at the quantum revival times and can be pro-
moted by applying localized dissipation. We plot the fraction of coherent state initial conditions
for which the two wells are EPR entangled (EPR > 0), as a function of time for Λ = 5.3. The initial
conditions are uniformly sampled on the Bloch sphere. The quantum revival times near the �xed
point (multiples of τ = 1.13 s) are marked with black vertical lines. The thin blue line is obtained
in the absence of dissipation; the thick green line is the result seen when atom loss at the second
site is induced between seconds 1 and 1.25 of the simulation. Applying dissipation increases the
fraction of initial conditions for which the wells are persistently entangled.

tories, is that entanglement is only observed in those regions of phase space where its

dynamics is dominated by the two-frequency behavior. In this sense, the two-frequency

model explains the dynamics of the dimer’s entanglement quite generically.

3.3 Dissipation-induced coherence

Atoms can be removed from a double-well optical trap with single-site resolution using

strong resonant laser blasts or a focused electron beam (Gericke et al., 2008; Würtz et al.,

2009). As we discussed in Chapter 1, this process can be described by the quantum master

equation in Lindblad form for the density matrix ρ,

d

dt
ρ = −ı[Ĥ , ρ] +

1
2

2∑
j=1

γj
(
â†j âjρ + ρâ

†

j âj − 2âjρâ†j
)
, (3.8)

where γj is the loss rate at site j. Instead of solving the master equation directly, we use

the quantum jump method (Section 1.4.2). Previous studies carried out along these lines



55

0.9985

1
co

nd
en

sa
te

fr
ac

tio
n

0 1 2 3 4 5
−2

−1

0

1

E
P

R

time (seconds)
0.8 0.9 1 1.1

0.95

0.96

0.97

0.98

0.99

1

φ / π

z

Figure 3.9: Dissipation-induced coherence, with signatures in condensate fraction, EPR entangle-
ment and phase space trajectory (expectation values of z and ϕ). The initial condition is the same
as in Figure 3.2, but atom loss (γ2 = 5 J/~) is induced at site 2 between seconds 1 and 1.5 of the
simulation. The plots of condensate fraction and EPR compare the results without (blue) and with
(green) dissipation.

show that controlled atom loss may lead to improved coherence (as measured by, among

other indicators, the condensate fraction) in the Bose–Hubbard dimer (Trimborn et al.,

2008b; Witthaut et al., 2008) and in multi-well systems (Trimborn et al., 2011; Witthaut

et al., 2011; Kordas et al., 2012).

An example of dissipation-induced coherence, simulated using the quantum jump

method, is shown in Figure 3.9. The initial condition is a coherent state near the self-

trapping �xed point. After a second of free evolution, atoms are removed from the less

populated site for half a second. The result is a long-term increase in condensate fraction

and a transition from intermittent entanglement to a persistently entangled state. This

process can be understood within the phase space picture: the system’s trajectory is

driven towards the stable �xed point, which is a region of high entanglement.

How representative is the picture presented above? Consider again the evolution

of 10,000 coherent states uniformly spaced in z and ϕ, shown in Figure 3.8. Between

the quantum revivals, the fraction of entangled states is substantially increased by the
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application of dissipation. This implies the mechanism shown in Figure 3.9 operates for

an appreciable range of initial conditions.

Analogous phenomena have recently been predicted (Grišins et al., 2016) and ob-

served (Rauer et al., 2016) in a quasi-1D ultracold atomic gas. In that setting, the ap-

plication of dissipation to a rapidly rotating Wigner function symmetrically narrows it,

leading to a lowering of the energy. As this happens simultaneously to all occupied modes

of a multimode system, it leads to the cooling of the gas.

3.4 Summary & Outlook

In this chapter, we have used the global phase space picture of the Bose–Hubbard dimer

to illuminate the dynamics of entanglement in this system and provide a novel perspec-

tive on dissipation-induced coherence. We showed that for initial conditions close to

the BJJ self-trapping points the dimer’s dynamics is completely captured by a projection

onto just three eigenstates. Where the projection is successful two frequencies appear

prominently in the observables: ffast, due to the mean-�eld motion, and fslow, associated

with a quantum revival. These frequencies are accurately analytically approximated by

a second-order expansion about the strong-coupling limit. The frequency fslow sets the

dominant time scale for the dynamics of EPR entanglement in the BEC dimer. This is

because the regions of phase space in which our description is valid coincide with the

regions where EPR entanglement persists. It is also within these regions that dissipation-

induced entanglement can be induced.

The signi�cance of this work is two-fold. Firstly, the patterns we describe—two-

frequency motion near the �xed point, the driving of the system into the �xed point

by dissipation and the resulting enhanced coherence—should be observable in ongoing

experiments. Secondly, and more broadly, analogous patterns may be present in larger,
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multi-well systems of cold atoms in optical lattices. These systems are potential platforms

for quantum information processing, but by virtue of their size cannot be analyzed via

exact techniques. Consequently, relationships between approximate but tractable semi-

classical dynamics and inherently quantum behavior such as are described here o�er an

attractive path to large-scale quantum engineering.



Chapter 4

Quantum magnetron

In the preceding chapters we have studied the Bose–Hubbard dimer as a model for cold

atoms in optical lattices. In this chapter we consider a very di�erent problem, that of

devising quantum models of sources of microwave radiation based on cyclotron electron

motion. We focus on the simplest such device, the cylindrical anode magnetron. Its

e�ective quantum description turns out to be a dissipative bosonic dimer, albeit with a

di�erent coupling to the reservoir than we have considered so far. Our model shows that

net radiation gain persists deep into the quantum regime and that startup will take place

even if the �eld initially contains no photons, thanks to spontaneous emission. Most

importantly, though, our work provides a framework for designing solid-state analogs of

the magnetron and related devices.

This chapter is based on Pudlik et al. (2016).

4.1 Introduction

Magnetrons are vacuum tubes that convert a DC voltage into electromagnetic radiation

in the microwave range. Historically, the designs of vacuum tube and solid state radiation

sources were radically di�erent, as transport in semiconductors was limited to the di�u-

sive regime. Today, as a wide range of two-dimensional materials transition from basic

research into the toolkit of device designers, it is becoming possible to build solid state de-



59

vices characterized by ballistic transport (Liang et al., 2007; Du et al., 2008; Mayorov et al.,

2011; Wang et al., 2015). Thus, a broad range of vacuum tube designs perfected over the

decades—magnetrons, crossed-�eld ampli�ers, gyrotrons, etc. (Gilmour, 2011)—can serve

as direct inspiration for a new generation of solid state radiation sources. Such devices

could retain some of the advantages of tubes, such as their wide frequency tunability,

without the disadvantages of cost and weight associated with vacuum technology. But

the new solid state devices would be di�erent in one critical respect: due to their small

size and the presence of band structure, they will exhibit quantum e�ects. Past work

on these devices has focused on analogs of linear beam tubes (Gribnikov et al., 2003;

Asada, 2003; Ryzhii et al., 2009). Here, we discuss crossed-�eld designs. As a �rst step

in the investigation of this class of devices, we propose a simple quantum model of the

magnetron.

We focus on the most basic magnetron design, the so-called cylindrical anode or Hull

magnetron (Hull, 1928; Collins, 1964; Ma, 2004). We brie�y review the classical mech-

anism of its operation in Section 4.2 before developing in the following two sections a

fully quantum model in which both the electron motion and the electromagnetic �eld are

quantized.

4.2 The classical model of the magnetron

The cyclotron resonance magnetron consists of two coaxial conducting cylinders; see the

top row of Figure 4.1. The inner cylinder is kept at a negative potential and constitutes

the cathode, the grounded outer cylinder is the anode, and the space between them is

evacuated. An external DC magnetic �eld points along the axis of the cylinders.
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Figure 4.1: Principle of operation of the cyclotron resonance magnetron. The DC �elds are set
up so that V ≈ VH (�rst column). If an electron is emitted when the AC voltage has the same
polarity as the DC, the electron collides with the anode before removing much energy from the
�eld (second column). If it is emitted when the AC voltage has a polarity opposite to the DC, it
remains in the device for a longer time and exchanges more energy with the �eld (third column).
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Equations of motion Consider an electron moving in the coaxial electrode arrange-

ment of Figure 4.1, with its position given in the usual cylindrical coordinates,

r = s ŝ + ϕ ϕ̂ + z ẑ.

The electron moves under the in�uence of the Lorentz force,

F = −ev × B − eE = −eBv × ẑ + eEŝ.

The motion of the electron is con�ned to z = const.; we’ll take z = 0. Since

v = ṡ ŝ + sϕ̇ ϕ̂,

we have

F = ŝ
(
eBsϕ̇ + eE

)
+ ϕ̂ (eBṡ )

and

a =
dv
dt
= ŝ

(
s̈ − sϕ̇2

)
+ ϕ̂

(
2ṡϕ̇ + sϕ̈

)
.

The equations of motion are therefore,

ŝ : s̈ − sϕ̇2 = −
eB

µ
sϕ̇ +

eE

µ
,

ϕ̂ : 2ṡϕ̇ + sϕ̈ =
eB

µ
ṡ,

where µ is the charge carrier mass.

To produce the top panels of Figure 4.1, these equations were solved numerically with
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the electric �eld magnitude given by,

E (s, t ) = EDC + EAC

=
VDC

s ln sc
sa

+
VAC

sa − sc
sin(ωt + ϕ).

In the absence of an AC �eld, the conserved electron energy is given by,

ϵ =
µ

2
(
ṡ2 + s2ϕ̇2

)
− eVDC

ln sc
s

ln sc
sa

.

In the presence of the AC �eld, ϵ becomes a function of time. The di�erence between

ϵ (t = 0) and ϵ (t = τ ) is the net energy gained by the AC �eld in the t interval [0,τ ].

Hull cuto� voltage An electron emitted by the cathode performs cyclotron motion

within the device. The radius of the cyclotron orbit increases with the accelerating volt-

age, V . Below the so-called Hull cuto� voltage, VH , the diameter of the orbit is smaller

than the device radius, and the emitted electrons never reach the anode. Above VH , the

electrons reach the anode and the device is conducting.

To �nd the Hull cuto� voltage, rewrite the second equation of motion as,

1
s

d

dt
(s2ϕ̇) =

eB

µ
ṡ,

d

dt
(s2ϕ̇) =

eB

2µ
d

dt
s2.

This implies,

s2ϕ̇ =
eB

2µ
s2 +C,

dC

dt
= 0.
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If the electron starts from rest at the cathode (ϕ̇ = 0, s = sc ), then

0 =
eB

2µ
s2
c +C ⇒ C = −

eB

µ
s2
c

and so

ϕ̇ =
eB

2µ

(
1 −

s2
c

s2

)
where sa is the anode (outer) diameter.

We’re interested in trajectories in which the electron barely grazes the anode. At the

apex of such a trajectory, s = sa and the velocity is purely tangential, so that conservation

of energy gives,
1
2
µϕ̇2s2

a = eV .

Using the ϕ̇ equation and rearranging, we obtain the Hull voltage condition,

VH
B2 =

es2
a

8µ

(
1 −

s2
c

s2
a

)2

. (4.1)

AC operation Now, consider a device operating just below VH . Connect a resonant

circuit tuned to the cyclotron frequency to the cathode and anode; this generates an AC

voltage in addition to the DC one. Those electrons emitted when the AC voltage has

the same polarity as the DC will absorb energy from the electromagnetic �eld—but since

they are accelerated by a voltage V > VH , they will be removed from the device by a

collision with the anode during their �rst orbit (see �rst column of Figure 4.1). Those

electrons emitted when the AC voltage has the opposite polarity lose energy to the �eld

and remain in the device. Crucially, by the time these slowed electrons reach the apex of

their orbit and turn around, the polarity of the AC voltage reverses, so that they are once

again giving up energy to the �eld. Thus, those electrons that are not quickly removed
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by a collision with the anode continuously transfer their energy to the electromagnetic

�eld (see third column of Figure 4.1). The result is net emission.

An important subtlety is that the interaction with the electromagnetic �eld perturbs

the electron’s orbit, leading to a gradual change of the relative phase of the electron’s and

the �eld’s oscillations. Therefore, even the electrons which initially contribute energy to

the �eld will eventually absorb it instead. From an energy perspective, the problem can

be stated as follows: if the only way for the electron to be removed from the device is a

collision with the anode, then by the time the electron is removed it must have absorbed

energy on net from the AC �eld. To eliminate this problem, all electrons are removed

from the device on some timescale long compared to the cyclotron frequency but short

relative to the dephasing time, even if they are in orbits too small to reach the anode.

In vacuum magnetrons, this can be achieved by tilting the magnetic �eld slightly away

from the electrodes’ axis.

4.3 Proposed device

The classical model of the previous section suggests the device design shown in Figure 4.2.

Recall that B, the DC magnetic �eld, is related to the frequency of operation through the

cyclotron condition,

ω =
eB

µ
. (4.2)

Critically, unlike in the vacuum device, the e�ective charge carrier mass can be controlled

by appropriate choice of material. This allows access to higher emission frequencies. For

example, in a monolayer of GaSe, with an e�ective mass of 0.053me (Wickramaratne

et al., 2015), an emission frequency of 1 THz should be achieved at a �eld of 1.9 Tesla.

(The device geometry and the Hull condition of Equation 4.1 set the voltage drop at
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Figure 4.2: Solid state magnetron. (a) Top view. (b) Side view.
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1.6 V.) Other two-dimensional materials with small e�ective masses and parabolic band

structures could be used as well. Bilayer graphene would be a natural candidate, but its

band structure shows deviations from parabolicity, and consequently its Landau levels

are only approximately uniformly spaced (Pereira et al., 2007). Another possibility would

be to use the two-dimensional electron gas in a AlGaAs/GaAs or AlGaAs/InGaAs/GaAs

heterostructure, with e�ective masses of 0.068me (Zudov et al., 2001) and 0.073me (Liu

et al., 1988), respectively. This would require a device geometry slightly di�erent from

that shown in Figure 4.2, with electrodes penetrating capping layers to contact the two-

dimensional electron gas.

Unfortunately, the validity of the simple classical model is far from obvious: the dis-

tance between the electrodes is less than 50 magnetic lengths (
√
~/eB), a scale at which

the wave nature of the electron cannot be ignored. In the remainder of this chapter, we

propose and develop a fully quantum model of a solid state magnetron.

4.4 Quantum model: DC operation

In the classical picture described in Section 4.2, a DC magnetic �eld and an absorbing

boundary allow for the transfer of energy from a DC voltage source to an AC signal. We

will now describe the same process from a quantum perspective.

To simplify the analysis, we will discuss a rectangular, rather than cylindrical, ge-

ometry as shown in Figure 4.3. (The rectangular geometry is simpler because the DC

electric �eld between the electrodes has a constant magnitude. The general mechanism

of device operation is unchanged.) Furthermore, we will restrict our considerations to

a planar, or 2D, device. Within the device region (y ∈ [0,L]) there are constant crossed

electric and magnetic �elds E and B, while outside of it—in the electrodes—the �elds are

zero. The motion of an electron subject to these external potentials is described by the
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Figure 4.3: A schematic of the quantum magnetron model. We will assumeW � L.

Hamiltonian,

H =
1

2µ
(p + eA)2 − eΦ, (4.3)

where −e < 0 is the electron charge and µ the electron mass.

We choose the Landau gauge, in which

Φ =




0 for y < 0,

Ey for y ∈ [0,L],

EL for y > L,

A =




0 for y < 0,

By for y ∈ [0,L],

BL for y > L.

(4.4)

By introducing the cyclotron frequency and magnetic length,

ωc =
eB

µ
, lB =

√
~

eB
, (4.5)

we can rewrite the Hamiltonian in terms of dimensionless variables,

ξ = x/lB, η = y/lB, α =
eElB
~ωc
, Λ = L/lB, (4.6)
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as,

H =
1
2
~ωc ×




p2
ξ
+ p2

η for η < 0,

(pξ + η)
2 + p2

η − 2αη for η ∈ [0,Λ],

(pξ + Λ)
2 + p2

η − 2αΛ for η > Λ.

(4.7)

In this gauge, ξ does not appear in the Hamiltonian and pξ is a constant of the motion.

The energy eigenstates {ψ } can be taken to be simultaneous eigenstates of pξ :

ψk (ξ ,η) = eıkξϕk (η), (4.8)

where ϕk is an eigenstate of the one-dimensional Hamiltonian,

Hk =
1
2
~ωc

(
p2
η +Vk (η)

)
. (4.9)

The e�ective potential Vk (η) is,

Vk (η) =




k2 for η < 0,

(k + η)2 − 2αη for η ∈ [0,Λ],

(k + Λ)2 − 2αΛ for η > Λ.

(4.10)

If we neglected the electrodes (assumed the device region extends from −∞ to∞, rather

than from 0 to Λ), the e�ective potential would be parabolic, leading to eigenstates and

energies of a simple harmonic oscillator,

ψm,k =

√
lB
W

eıkξe−(η+k−α )
2
Hm (η + k − α ), (4.11)

ϵm = ~ωc

(
m +

1
2

)
+ ~ωc

(
αk −

α2

2

)
, (4.12)
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where Hm is the m’th Hermite polynomial, m = 0, 1, 2, . . .; k = 2πlB
W p for p ∈ Z; andW

is the device width. If the device region is large but �nite, we expect the eigenstates to

take a similar form within this region.Halperin (1982) This implies we are interested in

states the center of which is within the device, or those for which k ∈ (α − Λ,α ).

The parameter α is a dimensionless measure of the electric �eld strength. If the device

is operated at the Hull cuto� voltage, i.e. if the width of the classical cycloid trajectory is

equal to the device length ( 2E
Bωc
= L), then

α =
Λ

2
, (4.13)

the allowed k values are k ∈ (−Λ/2,Λ/2) and the e�ective potential takes the simple

form,

Vk (η) =




k2 for η < 0,

(k + η)2 − Λη for η ∈ [0,Λ],

k2 + 2kΛ for η > Λ.

(4.14)

Note that the potential is parabolic within the device region and always contains a bound

state as well as higher-energy scattering states. In what follows we will restrict our at-

tention to the k = 0 case, corresponding to an electron injected into the device with no

momentum in the x (or η) direction.

In the absence of an AC �eld, the magnetron operates as a diode (see Figure 4.4).

For α ≤ Λ
2 , an electron initially localized just within the device, by the cathode, can

be decomposed into eigenstates that do not enter the anode; consequently, there is no

current. For α > Λ
2 , however, states localized near the cathode can be decomposed into

scattering states extending to the anode, and current is observed. Increasing α even

further a�ects states initially localized closer to the device’s center, but since the electrons
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Figure 4.4: In the absence of an AC �eld, the magnetron operates as a diode. The e�ective potential
V0 (η) is plotted above for three values of α (or, equivalently, DC voltage), for k = 0. Below and
at the Hull voltage VH , no conduction is observed, as an electron localized near the left edge of
the device can be decomposed into bound states. AboveVH , the electron can only be decomposed
into scattering states, and the current is a constant independent of voltage.

Figure 4.5: Schematic of the two-mode quantum model of magnetron AC operation.

enter the device near the cathode, this does not increase the current. Thus, the current-

voltage characteristic is approximately a step function, in agreement with the classical

model.

4.5 Quantum model: AC operation

To treat the interaction of the electron with the AC �eld, we will introduce a simpli�ed

e�ective model schematically depicted in Figure 4.5. We will consider only one mode of

the AC �eld, described by the Hamiltonian,

H�eld = ~ω
(
b̂†b̂ +

1
2

)
, [b̂, b̂†] = 1̂. (4.15)
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Since the e�ective potentialV0(η) within the device region is parabolic, we will approxi-

mate the single-particle electron energy with another harmonic mode:

Helectron = ~ω
(
â†â +

1
2

)
, [â, â†] = 1̂. (4.16)

The interaction energy between the electron and the �eld is (Marcuse, 1980, p. 57),

Hint =
~e

2L
1√
µC

(â† + â) (b̂† + b̂) =
e

2Λ

√
~ω

C
(â† + â) (b̂† + b̂), (4.17)

where C is the magnetron’s capacitance. De�ning

J =
e

2Λ
1

√
~ωC
, (4.18)

and performing a rotating wave approximation [justi�ed as long as the coupling is small,

J � ω (Walls and Milburn, 2008)], we can write the total e�ective Hamiltonian in dimen-

sionless form,

He� = ~ω
(
â†â + b̂†b̂ + J (â†b̂ + b̂†â) + 1̂

)
. (4.19)

This model incorporates the e�ects of the DC and AC �elds but does not describe the

electron being absorbed by the anode. In the absence of this dissipative process, neither

the classical nor the quantum model predicts net energy transfer to the AC �eld.

To model electron loss from the magnetron cavity, we couple the system described

by He� to a fermionic reservoir representing the anode:

HE =
∑
k

εk r̂
†

k
r̂k , {r̂k , r̂

†

l
} = δk,l . (4.20)

The annihilation (creation) of an electron in a staten of the approximate harmonic poten-
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tial within the device is described by the fermionic operator ĉn (ĉ†n), with {ĉm, ĉ†n } = δm,n.

The electron part of the Hamiltonian can still be written as Equation 4.16,1 but the oper-

ator â is now de�ned as,

â =
∞∑
n=0

√
n + 1 ĉ†nĉn+1. (4.21)

On the subspace of one-electron states, the operator â satis�es the usual bosonic com-

mutation relation. The most general form of the coupling between the electron in the

device and the fermionic reservoir is,

V̂ =
∑
n

∑
k

γn,k (ĉn + ĉ
†
n ) (r̂k + r̂

†

k
). (4.22)

Since we are not interested in the dynamics of the reservoir, we will treat the electron

and AC mode as an open quantum system in the sense of Section 1.4. This will allow us

to derive equations of motion for the system degrees of freedom only.

The details of the derivation, which uses the approach of Tomka (2014) originally

developed by Beaudoin et al. (2011) are in Appendix D. Here, we will only recapitulate

the assumptions:

1. Born approximation: the density matrix of the anode is only negligibly a�ected by

the interaction with the electron in the device.

2. Markov approximation: the anode correlation functions decay at a rate much faster

than any other timescale of the model.

3. Rotating wave approximation in the system-bath coupling.

4. The anode is in thermal equilibrium, and the Fermi factor of the relevant levels is

approximately zero. This implies the anode never emits electrons into the device,

1Except that the zero-point energy is no longer 1 but rather 1
2 +

∑
n ĉ
†
nĉn .
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and any electron impinging on the anode from the device will be absorbed.

5. We ignore the frequency shift of the device energy levels that results from the

coupling to the reservoir. The frequency shift is in general not negligible. However,

its main consequence is that the actual emission frequency of the device is di�erent

from the DC cyclotron frequency eB/µ.

6. The system-reservoir coupling constants satisfyγn,k = γn,k ′ ≡ γn for alln,k,k′. This

is a technical assumption which simpli�es the form of the �nal results; it could be

substantially relaxed if we wished to make more speci�c assumptions about the

band structure of the anode.

Given these assumptions, the time evolution of the system density matrix is given by an

equation of the Lindblad form,

ρ̇ = −ı[He� , ρ] + ÂρÂ −
1
2

(
Â†Âρ + ρÂ†Â

)
, (4.23)

where the operator Â is,

Â =
√

2πσ
∞∑
n=0

γnĉn, (4.24)

with σ the anode density of states.2 Thus, the e�ect of the anode is to remove electrons

from level n at a rate γn.

What are the values of the dissipation rates? The scattering modes of the e�ective

potentialV (η) (Equation 4.14) overlap with the electrodes; an electron excited into one of

these levels will be removed from the device at a rate of order L/v ∼ L
√

µ
~ω � J . But as

we observed while discussing the classical device, the lower energy electrons must also

be removed from the device, albeit at a slower rate ∼ J , if net emission is to be observed.
2The density of states is a constant because we have assumed the device, including the electrodes, to

be con�ned to a plane.
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Therefore, we will assumeγn is a step function ofn, taking values of order J for the bound

states and much larger values for the scattering states.

The model described above could be further extended in interesting ways, some of

which we consider in the �nal section. But the structure we have built up so far is su�-

cient to capture the essence of magnetron dynamics, as we discuss next.

4.6 Emission from a Fock state

On the face of it, the e�ective quantum model is very di�erent from the classical one

and rather more complicated.3 This suggests two questions: does the quantum model

agree with the classical one? And does it go beyond it, predicting any new e�ects? To

answer them, we simulate the model using the quantum jump algorithm introduced in

Section 1.4.2.

The central prediction of the classical model is that energy will be transferred on av-

erage from the DC electrical �eld which accelerates the electron to the AC �eld. This

phenomenon is reproduced in the quantum model. The left panel of Figure 4.6 shows the

expected number of quanta (or energy in units of ~ω, or—in the case of the EM mode—

number of photons) attributable to the electron and the �eld over time, for an initial Fock

state of the �eld and the electron in which the two have equal energy. Since the electron

decays from the device, in the long-time limit it contributes nothing to the system’s en-

ergy. The �eld, however, contains more photons at long times than it contained initially.

What is the mechanism behind this process? The interaction between the electron

and the AC �eld enables emission and absorption events. Because the Hamiltonian of
3In a certain sense, the quantum model is actually much simpler. While the classical model is de�ned in

terms of partial di�erential equations on a continuous space, the quantum model is described by ordinary
di�erential equations on a discrete space.
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Figure 4.6: Transfer of energy from the DC to the AC �eld in the quantum magnetron. The left
panel shows the time evolution of the expected number of electron quanta, 〈â†â〉 (red), and AC
mode photons, 〈b̂†b̂〉 (blue), over time. The electron decays from the device, but deposits in the
AC �eld some of its energy, which was ultimately derived from the accelerating DC voltage. The
right panel shows the �nal distribution over Fock states of the EM �eld: an electron could absorb
or emit photons, but sequences of more than a few absorptions did not occur. See the text for
further discussion.

Equation 4.19 is symmetric with respect to a relabeling of the modes (â → b̂, b̂ → â), an

isolated system would, over times > 1/J , be equally likely to emit m photons (transfer

m quanta from the electron to the �eld) as to absorb m photons, for any m. In the open

system, this symmetry is broken by the decay rates {γn} that depend on n, the index of

the electron level. A sequence of many emissions is now more likely than a sequence of

many absorptions, because just a few net absorptions will place the electron in a scat-

tering state—the electron will be removed from the device before it can absorb further.

This early termination of chains of net absorptions is illustrated in the right panel of Fig-

ure 4.6, which shows the probability distribution over �nal Fock states of the EM �eld.

The distribution is dramatically skewed to the right: sequences of many emissions (�eld

quanta� 50) are common, but those of many absorptions (�eld quanta� 50) are never

observed.

Ampli�cation of an existing AC �eld, then, is predicted by both the classical and the



76

0 5 10 15 20
time (1/J)

0

10

20

30

40

50

n
u
m
b
e
r 
o
f 
q
u
a
n
ta

Number of quanta over time

EM field
electron
interaction + zero point

Figure 4.7: The quantum model of the magnetron predicts spontaneous emission. The expected
energy of the electron (red) and �eld (blue) are plotted over time, for an initial Fock state of the
electron and vacuum state of the �eld. Initially, the �eld carries no energy, but by the time the
electron has decayed, about half of the electron’s initial energy has been transferred to the �eld.
(The rest of the electron’s energy has been lost to the reservoir.)

quantum models. In the former model, the device can only operate as an ampli�er: if

the initial amplitude of the AC �eld is zero, the classical prediction is that it will stay

zero. In contrast, the quantum model of the previous section predicts spontaneous emis-

sion even if the �eld is initially in a vacuum state. This is illustrated in Figure 4.7. (In

practice, there is always nonzero �eld present in the device due to thermal �uctuations,

and the magnetron will start up without an external input even in the classical model.

At low temperatures, however, the contribution of spontaneous emission should become

signi�cant.)

4.7 Summary & Outlook

Inspired by the classical model of the cylindrical diode magnetron, we have proposed

an e�ective quantum model consisting of two bosonic modes coupled to a fermionic

reservoir. The quantum model captures the essential behavior of the established classical

approach by predicting a net energy transfer from the DC to the AC �eld. But the quan-
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tum framework can explain a greater range of phenomena, such as spontaneous emission

when the �eld starts out in the vacuum state.

Our results suggest that a solid-state analog of the magnetron would continue to act

as a radiation source, with the critical di�erence that the emission frequency could be

elevated to the terahertz range by using a material with small e�ective mass.

The work discussed here can be extended in interesting ways. Accurate numerical

simulations accounting for the device geometry, perhaps using non-equilibrium Green’s

function methods (Datta, 2000, 2005), are the next natural step. Investigating the wide

variety of vacuum tube designs beyond the cylindrical anode magnetron (and the inter-

play between ballistic electron dynamics and electrodynamics they exploit) is another

possibility. Finally, one could develop entirely novel designs based on materials with

nonparabolic band structures such as graphene. The use of unevenly spaced Landau lev-

els as gain media for lasers had been patented in the 1960s (Wol�, 1966), but at the time

thought impossible to realize. Today we possess both the experimental and theoretical

tools to �nally implement such concepts.



Appendix A

An implementation of the quantum jump

algorithm

This Appendix contains a Python implementation of the quantum jump algorithm de-

scribed in Section 1.4.2.2.

The function below assumes your namespace contains a function pseudohamil-

tonian which returns a matrix representation of the null measurement operator (M̂0−

1) that appears in Equation 1.26. It does not actually perform the quantum jump, which

requires acting on the wavefunction with a problem-dependent operator, but evolves the

wavefunction up to the time when the jump ought to be performed. Throughout the

evolution, the observables are recorded at regular “snapshot intervals.”
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import numpy as np
from scipy.integrate import complex_ode

def evolve_until_jump(psi, obs, t, pa):
"""Evolve the wavefunction until the next jump, recording observables.

Parameters
----------

psi: The initial wavefunction.
obs: An object with ‘measure‘ and ‘snapshots_remaining‘ methods,

used for recording the observables given the wavefunction.
t: Evolution start time.
pa: Simulation parameters dict. Should include the key

’snapshot_interval’ (the time between successive measurements)
and may include any parameters to be passed to the
‘pseudohamiltonian‘ function or (under ’integrator_params’) to
the integrator.

Returns
-------

tau: Time when the jump took place.
obs: Updated instance of input obs object.
psi: Wavefunction at time tau (right before the jump).

"""
if ’seed’ in pa.keys():

# Random number provided by main program
r = pa[’seed’]

else:
r = np.random.uniform()

h = pseudohamiltonian(pa)
def forward_evolution(t, y):

"""RHS of equation of motion."""
psi = y[0:-2]
hpsi = -1.0j*np.dot(h, psi)
norm_derivative = 2*np.dot(psi.conjugate(), hpsi).real
return np.append(hpsi, [norm_derivative, 1.0])

jump_took_place = []
def terminate(t, y):

"""Should integration be termined at the current time step?"""
#if np.linalg.norm(y[0:-2])**2 <= r:
if y[-2].real < 0:

jump_took_place.append(True)
return -1 # Stop integration

else:
return 0 # Continue on

integrator = complex_ode(forward_evolution)
integrator.set_integrator(’dopri5’, **pa[’integrator_params’])
integrator.set_solout(terminate) # Must be set before initial values to work
integrator.set_initial_value(np.append(psi, [1 - r, t]), t)
# Note that the evolved vector was extended by two dimensions, the first
# of which is the norm of the wavefunction.

if t > 0:
# Integrate to the next snapshot. This special step is necessary when
# t > 0 so that the interval between snapshots immediately preceding
# and following the quantum jump is not shorter than the other snapshot
# intervals.
next_snapshot = pa[’snapshot_interval’]*np.ceil(t/pa[’snapshot_interval’])
integrator.integrate(next_snapshot)
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obs.measure(integrator.y[0:-2]/np.linalg.norm(integrator.y[0:-2]))
for n in range(1, obs.snapshots_remaining() + 1):

integrator.integrate(t + n*pa[’snapshot_interval’])
if jump_took_place:

break
else:

obs.measure(integrator.y[0:-2]/np.linalg.norm(integrator.y[0:-2]))

if jump_took_place:
# Use Henon’s trick to localize it.
def backward_evolution(t, y):

psi = y[0:-2]
hpsi = -1.0j*np.dot(h, psi)
norm_derivative = 2*np.dot(psi.conjugate(), hpsi).real
return np.append(hpsi/norm_derivative,

[1.0, 1.0/norm_derivative])

int_henon = complex_ode(backward_evolution)
int_henon.set_integrator(’dopri5’, **pa[’integrator_params’])
int_henon.set_initial_value(integrator.y, integrator.y[-2])
int_henon.integrate(0)
tau = int_henon.y[-1].real
psi_out = int_henon.y[0:-2]

else:
tau = integrator.y[-1].real
psi_out = integrator.y[0:-2]

return (tau, obs, psi_out, jump_took_place)



Appendix B

Semiclassical quantization

This appendix contains technical details of the semiclassical quantization procedure used

in Chapter 2.

B.1 Splitting of the semiclassical ground state

In this appendix, we use Equation 2.16, the quantization condition of Graefe and Ko-

rsch (2007), to derive an approximate expression for the energy splitting of the nearly-

degenerate self-trapped eigenstates. This expression and its derivation have been known

to scholars of the WKB approximation—see Razavy (2003, p. 49) or Child (1991, p. 52)—but

the discussion we give here is more complete than that found in other sources.

Equation 2.16 can be rewritten as,

cos(2Sw − Sϕ ) = −
1√

1 + exp(2πSϵ )
. (B.1)

Considered as a function of x ≡ 2Sw − Sϕ , this equation has pairs of solutions symmetri-

cally spaced about (2n + 1)π (see Figure B.1). The pairs of roots coalesce as Sϵ → −∞: in

the absence of tunneling, states come in degenerate pairs, one localized in each well. Let

the two solutions near x = π be x±, with x+ > π and x− < π . We have,
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Figure B.1: Graphical representation of the roots of Equation B.1.

tanx± =
∓
√

1 − cos2(x±)

cosx±
= ∓ exp(πSϵ ), (B.2)

where the sign di�erence on the right-hand-side arises because sin(x ) changes sign at

x = π , between x− and x+.

Recall that x ≡ 2Sw − Sϕ is a function of energy. Assume the ground state energy

splitting ∆E is su�ciently small that x (E) is approximately linear in an interval of width

∆E about the ground state energy, E0. Then,

x± = x (E0 ± ∆E/2),

and Equation B.2 gives,

tan(2Sw (E0 ± ∆E/2) − Sϕ (Sϵ (E0 ± ∆E/2))) = ∓ exp(πSϵ (E0 ± ∆E/2)),

or,

2Sw (E0 ± ∆E/2) − Sϕ (Sϵ (E0 ± ∆E/2)) = ∓ arctan (expπSϵ (E0 ± ∆E/2)) .

Expanding to �rst order about E0,

2Sw − Sϕ ±
(
2
∂Sw
∂E
−
∂Sϕ

∂Sϵ

∂Sϵ
∂E

)
∆E

2
= ∓ arctan(exp(πSϵ )) −

2π
cosh(πSϵ )

∂Sϵ
∂E

∆E

2
.
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Subtracting the lower signs from the upper signs and rearranging yields,

∆E

2
= −

arctan exp(πSϵ )

2 ∂Sw∂E −
∂Sϕ
∂Sϵ
∂Sϵ
∂E

. (B.3)

Consider the second term in the denominator. Letting ξ ≡ Sϵ and using the de�nition of

Sϕ (Equation 2.17), the dimensionless derivative can be written as,

∂Sϕ

∂Sϵ
= − ln ξ +

1
2
ψ

(1
2
− ıξ

)
+

1
2
ψ

(1
2
+ ıξ

)
, (B.4)

whereψ is the digamma function, de�ned as

ψ (t ) =
Γ′(t )

Γ(t )
.

For |t | > 3, an excellent approximation (good to 0.03%) to this function is provided by

the asymptotic expansion (Olver et al., 2015, 5.11.2),

ψ (t ) ≈ ln t −
1
2t
−

1
12t2 .

Using this expansion,

∂Sϕ

∂Sϵ
≈

1
2

ln
(
1 +

1
4ξ 2

)
−

4
3

1 + 2ξ 2

(1 + 4ξ 2)2
≈

3 − 8ξ 2(1 − 2ξ 2)

24ξ 2(1 + 2ξ 2)2
.

This expression is already smaller than 0.01 at ξ = 2, and decreases with ξ as 1/ξ 2. Since

the phase space derivatives ∂Sw/∂E and ∂Sϵ/∂E are of the same order, and ξ = Sϵ is of

order N , the second term in the denominator of Equation B.3 can be neglected:

∆E = −
arctan expπSϵ

∂Sw
∂E

.
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Since the splitting is small, exp(πSϵ ) � 1 and so arctan exp(πSϵ ) ≈ exp(πSϵ ). If we

let T = 2π/ω be the period of the orbit corresponding to the action 2Sw ,

2
∂Sw
∂E
=

1
~
T =

2π
~ω
.

Neglecting the second term in the denominator of Equation B.3, we get,

∆E = −
~ω

π
exp(πSϵ ). (B.5)

The negative sign of ∆E indicates that x+ is actually lower in energy than x−.

As a special case, this result applies to a single particle in a double-well potential de-

scribed by the Schödinger equation. For that special case there exist a simpler derivation

of Equation B.5: see Landau and Lifshitz (1981), §50.

B.2 Action integrals

To perform actual calculations using the formula,

∆E =
~ω

π
exp(πSϵ ),

we need to �nd explicit expressions forω (or the corresponding periodT ) and Sϵ in terms

of E and Λ. It will also prove useful to �nd an expression for 2Sw , the action associated

with the self-trapped orbit, which determines the energy about which the splitting takes

place. All of these quantities depend on the shape of the classical orbits of the mean-�eld

Hamiltonian of Equation 2.13. The equation of the orbit is,

ϕ (z,E,Λ) = arccos
Λz2 − 2E
2
√

1 − z2
, (B.6)
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and the classical turning points of the orbits (see Figure 2.7) are,

z±(E,Λ) =

√
±
√

1 − 2EΛ + Λ2 + ΛE − 1
Λ2/2

. (B.7)

In what follows, we will generally suppress the explicit dependence of ϕ and z± on E

and Λ to obtain clearer expressions. Recall that we de�ned the dimensionless measure of

orbit size as,

k ≡

√
z2
+ − z

2
−

z2
+

.

We begin with the simplest problem, that of deriving an expression for the orbit period

T . The approach to computing the action integrals Sϵ and Sw will be the same, but the

technical details are more involved.

See Graefe et al. (2014) and the references therein for a deeper look at the geometry

of the classical model and its relationship to Bose–Hubbard dynamics.

B.2.1 Period T of the classical orbit

The equation of motion for z is,

ż = −
∂H

∂ϕ
= −
√

1 − z2 sinϕ, (B.8)

and so the period is,

T = 2
�����

∫ z+

z−

dt

dz
dz

�����
= 2

∫ z+

z−

dz
√

1 − z2 sinϕ (z)
. (B.9)
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Since sin(arccosx ) =
√

1 − x2, we can use Equation B.6 to eliminate the trigonometric

functions:

T = 4
∫ z+

z−

dz√
4(1 − z2) − (Λz2 − 2E)2

. (B.10)

Although at �rst glance this expression has a very complicated structure, the polynomial

in the denominator (which is also encountered in the Sw and Sϵ integrals) can be rewritten

in the more suggestive form,

4(1 − z2) − (Λz2 − 2E)2 = −Λ2(z2 − z2
+) (z

2 − z2
−). (B.11)

The period is therefore,

T =
4
Λ

∫ z+

z−

dz√
(z2
+ − z

2) (−z2
− + z

2)
=

4
Λz+

K *.
,

√
z2
+ − z

2
−

z2
+

+/
-
=

4
Λz+

K(k ), (B.12)

where K is the complete elliptic integral of the �rst kind. Note that in this expression, time

is measured in the dimensionless units introduced with the Hamiltonian of Equation 2.13.

Converting the units to seconds,

T =
2

JΛz+
K(k ), (B.13)

where J is measured in hertz.

B.2.2 Action of the classical orbit

The phase space areas (and so actions) associated with the classical orbits can be found

by integrating ϕ (z). For an orbit in the self-trapping region, the action is

S (E,Λ) = h
N + 1

4π
· *

,
2
∫ z+

z−

π − ϕ (z) dz + 2π (1 − z+)1 (E < Λ/2) +
-
. (B.14)
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The prefactor hN+1
4π normalizes the total area of phase space to be h(N + 1), with N the

number of particles. If E < Λ/2, the orbit is a rotation orbit (see Figure 2.7) and the area

of the “cap” at |z | > z+ is added to the integral of ϕ (z).

The integral in Equation B.14 can be simpli�ed through an integration by parts:

∫ z+

z−

π − ϕ (z) dz =

∫ z+

z−

z2
(
z2 + 2E−Λ

Λ

)
(1 − z2)

√
(z2 − z2

−) (−z
2 + z2

+)
,

where the boundary term is zero since ϕ (z±) = π/2. This is an elliptic integral (Olver

et al., 2015, §19.2(i)) and can be reduced to the canonical elliptic integrals using a partial

fraction decomposition. Let,

P = −(z2 − z2
+) (z

2 − z2
−).

Then,

∫ z+

z−

π − ϕ (z) dz = −z+E(k ) +
(
1 −

2E
Λ

) 1
z+

(
K(k ) −

1
1 − z2

+

Π
(
α2,k

))
, (B.15)

where K(k ), E(k ), and Π(α2,k ) are complete elliptic integrals of the �rst, second and third

kinds, k is the measure of orbit size de�ned in Equation 2.19, and

α2 =
z2
+ − z

2
−

z2
+ − 1

.

B.2.3 Tunneling action Sϵ

The “tunneling action” is de�ned analogously to the orbit action,

Sϵ (E,Λ) = −
N + 1

4π
· 2

∫ z− (E,Λ)

−z− (E,Λ)
|π − ϕ (z,E,Λ) | dz,
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with the absolute value necessary because ϕ (z,E,Λ) may be complex within the region

of integration. In fact, in the self-trapping region (E > 1, Λ > 1) the argument of the

arccosine in ϕ (z,E,Λ) is smaller than −1 for all z ∈ [−z−, z−]. Consequently, taking

advantage of the identity,

arccos(−1 − x ) = π − ı arccosh (1 + x ),

one may rewrite Sϵ as,

Sϵ = −
N + 1
π

∫ z−

0
arccosh

(
2E − Λz2

2
√

1 − z2

)
dz.

As in the case of the orbit action, Sϵ can be recast as an elliptic integral through integration

by parts, and then reduced to a sum of canonical elliptic integrals using a partial fractions

expansion. The result is,

−
πSϵ
N + 1

= −

(
1 −

2E
Λ

) 1
z+

Π(z−2
+ ,k

′) + z+ (K(k′) − E(k′)) , (B.16)

where k′ =
√

1 − k2 and we have used identity 19.6.5 in Olver et al. (2015).

B.3 Approximate solution to the quantization problem for large

N

In this section, we derive an approximate semiclassical expression for the splitting by

expanding the integrals of the previous section in small orbit sizes, k , and energies, e .
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B.3.1 Approximate orbit frequency

To lowest order,

ω =
2π
T
=
πΛz+
2K (k )

=
√
Λ2 − 1 +O (

√
e ). (B.17)

A higher-order expansion is unnecessary because ∆E depends on e primarily through

the tunneling phase in the exponent.

B.3.2 Energy of the highest-energy state

Many of the quantities encountered in our discussion so far can be expressed more simply

in terms of e [the normalized energy relative to the maximum of E—see Equation 2.22]

than E. For instance, the classical turning points are,

z± = 1 −
1
Λ2

(
1 ∓ (Λ − 1)

√
e
)2

and the dimensionless measure of orbit size is,

k2 =
z2
+ − z

2
−

z2
+

=
4
√
e

(
√
e + 1)2 + Λ(1 − e )

.

The quantization condition of Equation 2.21 reads,

π

N + 1
− π (1 − z+) · 1

(
e > (Λ − 1)−2

)
= −z+E(k )

−
1 − (Λ − 1)2e

Λ2
1
z+

(
K(k ) −

1
1 − z2

+

Π(α2,k )

)
, (B.18)

withk and z± given by the expressions in the previous section. Consider the case e < (Λ−

1)−2, when the highest-energy state orbit is a libration. Expanding the elliptic integrals to
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Figure B.2: Relative error in approximating the (numerically exact) solution of Equation B.18 with
the lowest-order approximation of Equation B.19. The �gure on the left shows the dependence
on Λ (for N = 20) and that on the right—the dependence on N (for Λ = 2).

lowest order in k and then to lowest order in e ,1 and then solving for e gives a �rst-order

estimate of the highest-energy state energy,

e ≈
2Λ
√
Λ2 − 1

(Λ − 1)2(N + 1)
. (B.19)

As was already remarked in the main text, this estimate is very good. See also Figure B.2.

What happens if the nonlinearity is su�ciently high that the highest-energy state

orbit is a rotation (i.e., (Λ−1)−2 < e � 1)? It turns out that this case cannot be successfully

treated using the same approach. The term 1
1−z2

+
Π(α2,k ) becomes ill-behaved, with both

the prefactor and α2 very large. The terms of the small-k2 expansion of Π(α2,k ) are

proportional to powers of α2 (Olver et al., 2015, Eq. 19.5.4), so keeping only the lowest-

order terms in k2 is no longer legitimate. But the di�culty of extending our semiclassical

method to this part of the parameter space is not a major concern, for two reasons:

1. The nonlinearity required for the ground state orbit to enclose the point z = 1 is

large indeed, especially for larger atom numbers. From Equation 2.23, the condition
1Because the prefactors themselves depend on e , a consistent expansion requires expanding Π to order

k4, though E and K are only expanded to order k2. (No odd powers of k appear in the expansions.)
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e > (Λ − 1)2 can be estimated to imply,

2Λ
√
Λ2 − 1 ≈ 2Λ2 > N + 1. (B.20)

2. The limit of very strong nonlinearity is particularly easy to treat using quantum

perturbation theory (Bernstein et al., 1990; Dounas-Frazer et al., 2007; Salgueiro

et al., 2007; Pudlik et al., 2013).

B.3.3 Approximate tunneling action

Finding a good large-N approximation for the tunneling action (Equation B.16) is more

di�cult because both Π(z−2
+ ,k

′) and K(k′)−E(k′) diverge in the limit k′ =
√

1 − k2 → 1−.

The lowest order asymptotic approximation is of O (e0):

−
πSϵ
N + 1

≈ −

√
Λ2 − 1
Λ

+ ln
(
Λ +
√
Λ2 − 1

)
.

It is possible to derive higher-order approximations by combining the known asymptotic

expansions of the complete elliptic integrals, but they are complex and disappointingly

inaccurate, except for large N and either very large or very small Λ.

Instead of pursuing a formal expansion, let’s attempt an ad hoc improvement of the

zeroth-order expression. Sϵ is a measure of the barrier to tunneling; as the ground state

approaches the separatrix (e → 1), the barrier should disappear. The simplest way to

enforce this behavior is to multiply the O (e0) expression by (1 − e ):

−
πSϵ
N + 1

≈ *
,
−

√
Λ2 − 1
Λ

+ ln
(
Λ +
√
Λ2 − 1

)+
-
(1 − e ). (B.21)

This ansatz works remarkably well; furthermore, unlike the asymptotic expansions which
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Figure B.3: Approximations to the semiclassical highest-energy state splitting. Numerical solu-
tions to Equation 2.16 are shows as blue dots; Equation B.22 is plotted as the solid red line, while
Equation B.22 with e = 0 is shown in dashed blue. The black vertical line marks the point where
the semiclassical approximation must break down because the area of phase space associated with
the self-trapped region is less than h/2.

may be either smaller or larger than the true value, Equation B.21 gives an upper bound

on the magnitude of Sϵ for all Λ.

B.3.4 Approximate splitting formula

By combining the approximate expressions for the classical orbital frequency and the

tunneling phase, we arrive at the following expression for the highest-energy state split-

ting:

∆E ≈
~ω

π

( 1
ω

e−z0
) (N+1) (1−e )

,

where z0 ≡
√

1 − 1
Λ2 is the position of the classical potential maximum andω = Λ

√
1 − 1

Λ2

is the frequency of motion about it (cf. Equation B.17]. In this expression, the frequency is

measured in the dimensionless units introduced with the Hamiltonian of Equation 2.13.



93

In the units of J and U (Hz),

∆E ≈ 2J
ω

π

( 1
ω

e−z0
) (N+1) (1−e )

. (B.22)

Figure B.3 shows a comparison of this approximation with the numerical solution

of the semiclassical quantization condition (Equation 2.16]. Since our approximation to

Sϵ overestimates the barrier to tunneling, the tunneling frequency is generally under-

estimated, except close to the bifurcation where the dependence of ω on e (which we

neglect) becomes important. Some qualitative features of the dependence of ∆E on Λ can

be reproduced even without the factor of (1−e ) in the exponent, and the agreement with

the numerical solution improves as N increases. However, this e = 0 approximation to

∆E is generally not within an order of magnitude of the numerically computed value.



Appendix C

Quantum revivals in the Bose–Hubbard dimer

This appendix discusses revivals of the wavefunction and certain observables occurring

in the Bose–Hubbard dimer at large U . First, in Appendix C.1, we show that for J = 0

and N odd the wavefunction rephases with a period of π~/U . Then, in Appendix C.2,

we show that the condensate fraction and EPR entanglement measure rephase with the

same period, for any N . Finally, in Appendix C.3 we derive perturbative corrections to

the J = 0 estimates of the “slow” and “fast” frequencies used in Chapter 3; the result of

this derivation is used as Equation 3.7 in the main text.

C.1 Revivals of the wavefunction

Consider a Bose–Hubbard dimer with J = 0 and N atoms. The energy eigenstates of this

system are the Fock states |n〉 ≡ |N1, N − N1〉, with energies

ϵn =
n(n − 1)

2
U +

(N − n) (N − n − 1)
2

U . (C.1)

It will prove convenient to de�ne a de-dimensionalized energy,

hn ≡
ϵn
U
. (C.2)
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The coherent states of the dimer are of the form,

��ψ (t )
〉
=

N∑
n=0

an e−ıϵnt/~ |n〉 , (C.3)

with the expansion coe�cients an all nonzero. Consider translating the coherent state in

time by

τ ≡
π~

U
. (C.4)

As was asserted in Chapter 3, the results of this translation depend on the value of N :

��ψ (τ )
〉
=




��ψ (0)
〉

for N = 1 + 4p,

−
∑N

n=0(−1)nan |En〉 for N = 2 + 4p,

− ��ψ (0)
〉

for N = 3 + 4p,∑N
n=0(−1)nan |En〉 for N = 4 + 4p,

(C.5)

with p ∈ Z≥0. Let us prove this assertion case by case.

Case 1. If N = 1 + 4p for p ∈ Z≥0, then ��ψ (τ )
〉
= ��ψ (0)

〉
.

Proof. Note that,

exp (−ıϵnτ/~) = exp(−ıπhn ). (C.6)

The de-dimensionalized energy hn satis�es,

2hn = n(n − 1) + (N − n) (N − n − 1) = n(n − 1) + (1 + 4p − n) (1 + 4p − n − 1)

= n2 − n + 4p − n + 16p2 − 4np − 4np + n2 = 2(n2 − n) + 4p + 16p2 − 8pn

hn = n(n − 1) + 2(p + 4p2 − 2pn)

The right-hand side is even for any n ∈ Z≥0 and any p ∈ Z≥0. Therefore, hn is even and
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exp (−ıπhn ) = 1. It follows that ��ψ (τ )
〉
= ��ψ (0)

〉
. �

Case 2. If N = 3 + 4p for p ∈ Z≥0, then ��ψ (τ )
〉
= − ��ψ (0)

〉
.

Proof. We proceed as in the previous case.

2hn = n(n − 1) + (N − n) (N − n − 1) = n(n − 1) + (3 + 4p − n) (3 + 4p − n − 1)

= n2 − n + 6 + 12p − 3n + 8p + 16p2 − 4np − 2n − 4np + n2

= 2n2 − 6n + 20p + 16p2 − 8np + 6

hn =
[
b (b − 1) + 2(−b + 5p + 4p2 − 2np)

]
+ 3

Note that the number in square brackets is always even; thus, hn is odd. Consequently,

for any n,

exp (−ıπhn ) = −1

The claim then follows from the de�nition of ��ψ (t )
〉
. �

Case 3. Let N be even. Then,

��ψ (τ )
〉
=

N∑
n=0

an e−ıϵnτ/~ |En〉

=




∑N
n=0(−1)nan |En〉 for N = 4p + 4,

−
∑N

n=0(−1)nan |En〉 for N = 4p + 2,

with p ∈ Z≥0.

Proof. Let q = N /2. We have,

2hn = n(n − 1) + (2q − n) (2q − n − 1) = 2n2 + 4q2 − 4nq − 2q

hn = (n2 − q) + 2(q2 − nq) = (n2 − q) + even factor
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The factor n2 − q (and, by extension, hn) is even if and only if n and q are of the same

parity. Recall that q is even when N = 4p + 4 and odd when N = 4p + 2. Therefore,

exp
(
−
ıϵnτ

~

)
= exp(−ıπhn )

=




1 if N = 4p + 4 and n is even or N = 4p + 2 and n is odd,

−1 if N = 4p + 4 and n is odd or N = 4p + 2 and n is even.

The claim follows immediately from the de�nition of ��ψ (t )
〉
. �

C.2 Revivals of the condensate fraction and EPR

Consider the two observables discussed in Chapter 3. The condensate fraction is given

by the normalized largest eigenvalue of the single-particle density matrix,

c =
1

2N

(
ρ11 + ρ22 +

√
(ρ11 − ρ22)2 + 4ρ12ρ21

)
, (C.7)

where ρij = 〈â†i âj〉. The entanglement measure EPR is,

EPR = 〈â†1â2〉〈â
†

2â1〉 − 〈â
†

1â1â
†

2â2〉. (C.8)

In this section, we show that these observables take the same values at time t = τ = π~/U

as at t = 0, regardless of the value of N . For N odd, this follows immediately from the

results of the �rst section of this Appendix, so assume N even.

Consider �rst the condensate fraction. We have,

ρij (t = 0) =
∑
n

∑
m

a∗nam 〈En | â
†

i âj |Em〉
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and, by the result proven in the �rst section,

ρij (t = τ ) =
∑
n

∑
m

(−1)n+ma∗nam 〈En | â
†

i âj |Em〉 .

At J = 0 the energy eigenstates are the Fock states, so the components of ρ can be found

immediately:

ρ11(t = τ ) =
∑
n

∑
m

(−1)n+ma∗namnδn,m =
∑
n

(−1)2n |an |2n =
∑
n

|an |
2n = ρ11(t = 0)

ρ22(t = τ ) = ρ22(t = 0) (analogously)

ρ12(t = τ ) =
∑
n,m

(−1)n+ma∗nam
√
(m + 1) (N −m)δn,m+1

=
∑
n

(−1)2n−1a∗nan−1
√
n(N − n + 1) = −

∑
n

a∗nan−1
√
n(N − n + 1)

= −ρ12(t = 0)

ρ21(t = τ ) = −ρ21(t = 0) (Hermiticity)

Note that ρ (t = τ ) di�ers from ρ (t = 0) only in the sign of the o�-diagonal elements.

But these elements enter the condensate fraction only through their product (cf. Equa-

tion C.7). Therefore, c (t = τ ) = c (t = 0).

The argument for EPR is similar. The �rst term in Eq. C.8 is equal to ρ12ρ21, and so

the same at t = τ as at t = 0; the second term is equal to N1N2, the product of the wells’

populations, and so independent of time. Therefore, EPR(t = τ ) = EPR(t = 0).

C.3 Perturbation about the J → 0 limit

In this Appendix, we derive the perturbative corrections to the J = 0 mean-�eld and

quantum revival frequencies (Equation 3.7).
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It is convenient to rescale the problem by dividing all energies by NU . Then, the

unperturbed Hamiltonian is given by,

H0 =
1

2N
(
â†1â

†

1â1â1 + â
†

2â
†

2â2â2
)

(C.9)

and is its representation in the Fock basis is,

*..............
,

N (N−1)
2N

(N−1) (N−2)
2N

(N−2) (N−3)
2N + 1

N

. . .

N (N−1)
2N

+//////////////
-

(C.10)

As in Chapter 3, we will denote the diagonal entries ε0, ε1, and so on; because of the

rescaling of the Hamiltonian, ϵi = NU εi . The perturbed Hamiltonian is

H = H0 +
J

NU

(
−â†1â2 − â

†

2â1
)
≡ H0 + λV (C.11)

and the Fock basis representation of V is the tridiagonal matrix,

−

*..............
,

0
√
N

√
N 0

√
2(N − 1)√

2(N − 1) 0
√

3(N − 2)
. . .

√
N 0

+//////////////
-

(C.12)

Let P be a projection operator onto a subspace corresponding to a set of degenerate levels

of H0. Number the levels n = 0, 1, 2, . . ., as in the main text; then, this operator is
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represented by a matrix with only two nonzero entries, Pn+1,n+1 = PN+1−n,N+1−n = 1.

Degenerate perturbation theory can be used to show that the kth order corrections to

the level energies, ϵ (k ) , are the eigenvalues of the matrix (Bernstein et al., 1990),

PWkP (C.13)

where the �rst fewWk matrices are

W1 = V ,

W2 = −VL
−1V ,

W3 = V (L−1V )2,

W4 = −V (L−1V )3 − ϵ (2)V (L−1)2V ,

(C.14)

with L−1 represented by a diagonal matrix with entries,

(L−1)ll =




1/(H0 − ϵ
(0)I )ll if (H0 − ϵ

(0)I )ll , 0,

0 otherwise,
(C.15)

where ϵ (0) are the unperturbed energies.

SinceV has no diagonal entries, PW1P is a matrix of zeroes and there are no �rst-order

corrections. (That ϵ (1) = 0 is used in the expressions for W3 and W4 in Eq. C.14, which

would otherwise contain terms proportional to ϵ (1) .) The second order corrections can
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be computed using the matrixW2. Its nonzero entries are,

(W2)ij =




−N /(ε1 − εn ) for i = j = N + 1 or i = j = 1,

−
(i−1) (N+2−i )

εi−1−εn
−

i (N+1−i )
εi−εn

for other i = j,

−
√
i (i + 1) (N + 1 − i ) (N − i )/(εi+1 − εn ) for j = i + 2,

−
√
j (j + 1) (N + 1 − j ) (N − j )/(εj+1 − εn ) for j = i − 2.

(C.16)

where n is the index of the level considered.

Recall that the degenerate states are those corresponding to rows i and N + 1 − i , for

i = 1, 2, . . . . SinceW2 has nonzero entries only on the main diagonal and the ±2 diago-

nals, the projection onto the subspace of degenerate levels PW2P may have o�-diagonal

entries only for the second-lowest energy level. Conversely, if N � 1, the second-order

corrections to the higher energy levels are given by the corresponding diagonal entries

ofW2. The corrections to the three highest-energy levels up to second order are given by,

ε0 → ε0 −
N

ε1 − ε0

( J

NU

)2
ε0 +

N 2

N − 1

( J

NU

)2

ε1 → ε1 −

(
N

ε0 − ε1
+

2(N − 1)
ε2 − ε1

) ( J

NU

)2
ε1 +

N (N 2 − N + 1)
(N − 3) (N − 1)

( J

NU

)2

ε2 → ε2 −

(
2(N − 1)
ε1 − ε2

+
3(N − 2)
ε3 − ε2

) ( J

NU

)2
ε2 +

N (N 2 − 3N + 8)
(N − 5) (N − 3)

( J

NU

)2

(C.17)

After substituting in the entries of the unperturbed Hamiltonian matrix (Equation C.10)

for the unperturbed energies εi , these expressions lead immediately to Equation 3.7.

Consider now the third-order corrections to the energies, determined by the matrix

W3. Except for the lowest-lying states, there are no o�-diagonal entries in PW3P ; this

follows from the central result of Bernstein et al. (1990), since o�-diagonal entries would

break the degeneracy the authors prove to hold to N th order of perturbation theory.
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Therefore, the third-order corrections to the energies are given by the diagonal entries

of the matrix W3. As we show below, these entries are all zero, and thus there are no

corrections of this order.

Let A be a matrix. We will call A an odd matrix if Ai,i+p = 0 for all i and all p even

(including p = 0), and an even matrix ifAi,i+p = 0 for all i and all p odd. Even and odd ma-

trices have the following properties under multiplication which provide the motivation

for our terminology:

Lemma 1. Let A and B be odd N × N matrices. Then, AB is an even matrix.

Proof. Let n be an odd integer.

(AB)i,i+n =
N∑
k=1

Ai,kBk,i+n =
N−i∑
p=1−i

Ai,i+pBi+p,i+n

Since A is an odd matrix, we may restrict the sum to odd p (the other entries are zero):

(AB)i,i+n =
∑
p odd

Ai,i+pBi+p,i+n

Letm = i + p.

Bi+p,i+n = Bm,m+n−p

Since p is odd and n odd, n − p is even and so Bi+p,i+n = 0 because B is an odd matrix.

Thus,

(AB)i,i+n = 0

for n odd, and AB is an even matrix. �

Lemma 2. Let A be an odd N × N matrix andC an even N × N matrix. Then, AC andCA

are odd matrices.
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Proof. Let n be an even integer. Proceeding as before,

(AC )i,i+n =
N∑
k=1

Ai,kCk,i+n =

N−i∑
p=1−i

Ai,i+pCi+p,i+n

=
∑
p odd

Ai,i+pCi+p,i+n .

Letm = i + p.

Ci+p,i+n = Cm,m−p+n .

Since p is odd and n is even, n − p is odd. Since C is an even matrix, Ci+p,i+n = 0 and

(AC )i,i+n = 0

for n even, proving that AC is an odd matrix. The proof for CA is analogous. �

The matrix V is odd, while the matrix L−1 is even. By the lemmas above, W3 =

V (L−1V ) (L−1V ) must be odd. The diagonal entries of an odd matrix are all zero. This

implies there are no third-order corrections to the energies, except for the lowest few

energy levels. Incidentally, the same argument can be used to show that the �fth-order

corrections are zero.



Appendix D

Derivation of the magnetron master equation

In this Appendix, we derive the master equation describing the AC operation of a mag-

netron, Equation 4.23.

We start from the Schrödinger equation for the system density matrix written in the

interaction frame,
dρ

dt
= −TrE

∫ t

0
dt ′[V̂I (t ), [V̂I (t ′), ρtot(t

′)]]. (D.1)

Here, ρ is the system density matrix, ρtot is the density matrix for the system plus environ-

ment, and TrE indicates a trace over the environment degrees of freedom. The interaction

picture coupling V̂I is related to the Schrödinger picture coupling V̂ of Equation 4.22 by,

V̂I = e−ı (Ĥe�+ĤE)tV̂ eı (Ĥe�+ĤE)t

=
∑
n

∑
µ

γnµe
ıĤe�t (ĉn + ĉ

†
n )e
−ıĤe�teıĤEt (r̂µ + r̂

†
µ )e
−ıĤEt .

Equation D.1 is exact.

Our �rst step will be to rewrite the coupling operator V̂I in a simpler form.
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D.1 Coupling in the interaction picture

For the environment operators, the anticommutation relations (Equation 4.20) imply,

[ıĤEt , r̂µ] = −ıtεµr̂µ

and so by the Trotter formula,

V̂I =
∑
n

∑
µ

γnµe
ıĤe�t (ĉn + ĉ

†
n )e
−ıĤe�t

(
r̂µe
−ıεµt + r̂†µe

ıεµt
)
. (D.2)

We would like to similarly replace the system operator exponentials with phases, but the

commutator [Ĥe� , ĉn] is not simply proportional to ĉn, so this is not possible. Instead, we

will rewrite V̂I in terms of dressed analogs of the system and bath annihilation operators.

Let |j〉 be an eigenstate of the system Hamiltonian Ĥe� . We choose the system eigen-

states to be simultaneous eigenstates of the electron number operator
∑

n ĉnĉ
†
n . A resolu-

tion of the identity for the Hilbert space of the system is
∑

j |j〉 〈j | = 1̂. Inserting it twice,

after the system time evolution operators,

V̂I =
∑
n

∑
µ

∑
j,k

γnµX
(n)
jk
|j〉 〈k |

(
r̂µe
−ıεµt + r̂†µe

ıεµt
)
eı∆jk t

where

∆jk = 〈j | Ĥe� |j〉 − 〈k | Ĥe� |k〉 ,

X (n)
jk
= 〈j | ĉn + ĉ

†
n |k〉 .

Since the system eigenstates were chosen to be simultaneous eigenstates of the electron

number operator, X (n)
jj = 0 for all j, n. We split the sum over k into two parts, with a view
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towards performing a rotating wave approximation in the system-bath coupling:

V̂I =
∑
n,µ,j

∑
k :k>j

γnµX
(n)
jk
|j〉 〈k |

(
r̂µe
−ıεµt + r̂mu

†eıεµt
)
eı∆jk t

+
∑
n,µ,j

∑
k :k<j

γnµX
(n)
jk
|j〉 〈k |

(
r̂µe
−ıεµt + r̂mu

†eıεµt
)
eı∆jk t .

Note that,

∑
j

∑
k :k<j

X (n)
jk
|j〉 〈k | eı∆jk t =

∑
k

∑
j:j<k

X (n)
kj
|k〉 〈j | e−ı∆jk t

=
∑
j

∑
k :k>j

X (n)
kj
|k〉 〈j | e−ı∆jk t

=
∑
j

∑
k :k>j

X (n)∗
kj

( |j〉 〈k |)†e−ı∆jk t ,

so we may write,

V̂I =
∑
n

(
B̂n (t ) + B̂

†
n (t )

) (
Ŝn (t ) + Ŝ

†
n (t )

)
,

with

B̂n (t ) =
∑
µ

γnµr̂µe
−ıεµt ,

Ŝn (t ) =
∑
j

∑
k :k>j

X (n)
jk
|j〉 〈k | eı∆jk t .

If we assume the system eigenstates are indexed in order of increasing electron number,

so that Ŝn (t ) is indeed a dressed annihilation operator, we may perform a rotating wave

approximation in the system-bath interaction to obtain,

V̂I ≈
∑
n

B̂†n (t )Ŝn (t ) + Ŝ
†
n (t )B̂n (t ).
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D.2 Born approximation and commutators of the coupling

As we have noted at the beginning of this Appendix, the evolution of the system density

matrix is given by the equation,

V̂I =
∑
n

∑
µ

γnµe
ıĤe�t (ĉn + ĉ

†
n )e
−ıĤe�t

(
r̂µe
−ıεµt + r̂†µe

ıεµt
)
.

We now perform the Born approximation, replacing ρtot(t
′) with ρ (t ′) ⊗ ρE (0) on the

right-hand side. This is a weak-coupling approximation: although the system and envi-

ronment become entangled as a result of their interaction, for the purposes of �nding the

e�ect of the environment on the system we will neglect any change in the environment’s

state. We obtain,

dρ

dt
= −TrE

∫ t

0
dt ′[V̂I (t ), [V̂I (t ′), ρ (t ′) ⊗ ρE (0)]].

We will now evaluate the commutators appearing on the right hand side of this equation.1

[V̂I (t ′), ρ ⊗ (t ′)ρE] =
∑
n

Ŝ†nρ ⊗ B̂nρE − ρŜ
†
n ⊗ ρEB̂n + Ŝnρ ⊗ B̂†nρE − ρŜn ⊗ ρEB̂

†
n

1For clarity, we will drop the explicit time dependence of Ŝ and B̂ (which can be inferred from the index:
m → t , n → t ′).
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and

[V̂I (t ), [V̂I (t ′), ρ ⊗ (t ′)ρE]] =∑
m,n

Ŝ†mŜ
†
nρ ⊗ (B̂mB̂nρE − B̂nρEB̂m ) + (Ŝ†mŜ

†
nρ − Ŝ

†
nρŜ

†
m ) ⊗ B̂nρEB̂m

−Ŝ†mρŜ
†
n ⊗ (B̂mρEB̂n − ρRB̂nB̂m ) − (Ŝ†mρŜ

†
n − ρŜ

†
nŜ
†
m ) ⊗ ρEB̂nB̂m

+Ŝ†mŜnρ ⊗ (B̂mB̂
†
nρE − B̂

†
nρEB̂m ) + (Ŝ†mŜnρ − ŜnρŜ

†
m ) ⊗ B̂†nρEB̂m

−Ŝ†mρŜn ⊗ (B̂mρEB̂
†
n − ρEB̂

†
nB̂m ) − (Ŝ†mρŜn − ρŜnŜ

†
m ) ⊗ ρEB̂

†
nB̂m .

Now, assume the reservoir is in a thermal state. The trace of the �rst half of the terms is

then zero, and

TrE [V̂I (t ), [V̂I (t ′), ρ ⊗ (t ′)ρE]] =
∑
m,n

Ŝ†mŜnρ ⊗ TrE (B̂mB̂
†
nρE) − ŜnρŜ

†
m ⊗ TrE (B̂

†
nρEB̂m )

− Ŝ†mρŜn ⊗ TrE (B̂mρEB̂
†
n ) + ρŜnŜ

†
m ⊗ TrE (ρEB̂

†
nB̂m )

+ h.c.

The master equation can be written as a sum of four integrals (and their hermitian con-

jugates),

dρ

dt
=

∑
m,n

∫ t

0
dt ′ Ŝ†m (t )ρ (t

′)Ŝn (t
′)〈B̂†n (t

′)B̂m (t )〉 − ρ (t
′)Ŝn (t

′)Ŝ†m (t )〈B̂
†
n (t
′)B̂m (t )〉

+ Ŝn (t
′)ρ (t ′)Ŝ†m (t )〈B̂m (t )B̂

†
n (t
′)〉 − Ŝ†m (t )Ŝn (t

′)ρ (t ′)〈B̂m (t )B̂
†
n (t
′)〉

+ h.c.

(D.3)
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where the bath correlation functions are,

〈B̂†n (t
′)B̂m (t )〉 = TrE (B̂

†
n (t
′)B̂m (t )ρE) = TrE

*.
,

∑
µ,ν

γ ∗nµγmνe
−ıεν t

′−εµt+/
-

=
∑
k

nkγ
∗
nkγmke

−ıεk (t−t
′) .

with nk the Fermi factor of bath level k (and 〈B̂m (t )B̂†n (t ′)〉 de�ned analogously). Because

we are working in two dimensions, the reservoir density of states is a constant, σ (ω) = σ .

Converting a sum over the levels into an integral over energies,

〈B̂†n (t
′)B̂m (t )〉 =

∫
dω σγ ∗n (ω)γm (ω)e

−ıω (t−t ′)n(ω),

〈B̂m (t )B̂
†
n (t
′)〉 =

∫
dω σγ ∗n (ω)γm (ω)e

−ıω (t−t ′) (1 − n(ω)).

D.3 Simplifying the master equation

To make further progress, it is necessary to make additional approximations. Consider

the �rst integral in Equation D.3 (the other integrals can be treated analogously). If we as-

sume that the bath correlation functions are memoryless (depend on t and t ′ only through

τ = t ′−t ) and make the Markov approximation by replacing the upper limit of integration

with∞,

I1 =

∫ t

0
dt ′ Ŝ†m (t )ρ (t

′)Ŝn (t
′)〈B̂†n (t

′)B̂m (t )〉

=

∫ t

0
dτ Ŝ†m (t )ρ (t − τ )Ŝn (t − τ )〈B̂

†
n (τ )B̂m (0)〉

=

∫ ∞

0
dτ Ŝ†m (t )ρ (t )Ŝn (t − τ )〈B̂

†
n (τ )B̂m (0)〉
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Expanding the operators Ŝ and B̂,

I1 =

∫ ∞

0
dτ

∑
j

∑
k :k>j

∑
l

∑
p:p>l

X (m)∗
jk

X (n)
lp
|k〉 〈j | ρ |l〉

〈
p�� eı (∆lp−∆jk )t

×

∫
dω σγ ∗n (ω)γm (ω)e

−ı (ω−∆lp )τn(ω).

The real part of I1 contributes to the decay rate, while the imaginary part is the frequency

shift. We will ignore the frequency shift, and taking advantage of,

<

∫ ∞

0
e−ıωt dt = πδ (ω),

will write,

I1 =
∑
j

∑
k :k>j

∑
l

∑
p:p>l

X (m)∗
jk

X (n)
lp
|k〉 〈j | ρ |l〉

〈
p�� eı (∆lp−∆jk )tπσγ ∗n (∆lp )γm (∆lp )n(∆lp ).

We will now make a second rotating wave approximation. The usual way of doing so

would be to drop all terms for which ∆lp , ∆jk . We will make the milder approximation

of replacing ∆lp with ∆jk in the argument of γm in the expression above. This allows us

to write,

I1 =
∑
j

∑
k :k>j

∑
l

∑
p:p>l

1
2
Â(m)†
jk

ρÂ(n)
lp

eı (∆lp−∆jk )t n(∆lp ), (D.4)

where we have de�ned

Â(m)
jk
=
√

2πσX (m)
jk
γm (∆jk ) |j〉 〈k | .
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Performing analogous manipulations for the remaining three integrals in Equation D.3,

we obtain,

I2 =
∑
j

∑
k :k>j

∑
l

∑
p:p>l

1
2
ρÂ(n)

lp
Â(m)†
jk

eı (∆lp−∆jk )tn(∆lp ),

I3 =
∑
j

∑
k :k>j

∑
l

∑
p:p>l

1
2
Â(n)
lp
ρÂ(m)†

jk
eı (∆lp−∆jk )t (1 − n(∆lp )),

I4 =
∑
j

∑
k :k>j

∑
l

∑
p:p>l

1
2
Â(m)†
jk

Â(n)
lp
ρeı (∆lp−∆jk )t (1 − n(∆lp )).

Now, assume that the anode only absorbs (never emits) electrons. This means the relevant

energy levels of the anode are unoccupied, or n(∆lp ) = 0 for all l , p. The master equation

is then,

dρ

dt
=

∑
m,n

∑
j

∑
k :k>j

∑
l

∑
p:p>l

1
2
eı (∆lp−∆jk )t (Â(n)

lp
ρÂ(m)†

jk
− Â(m)†

jk
Â(n)
lp
ρ) + h.c.

Recall that this is the equation for the density matrix in the interaction picture. The

Schödinger picture evolution of the density matrix is given by,

dρS
dt
= −ı[Ĥe� , ρS] + e−ıĤe�t ρ̇eıĤe�t . (D.5)

Since the sums over the states in the dρ/dt equations above are over eigenstates of Ĥe� ,

the exponential factors cancel:

dρS
dt
= −ı[Ĥe� , ρS] +

∑
m,n

∑
j

∑
k :k>j

∑
l

∑
p:p>l

1
2
(Â(n)

lp
ρSÂ

(m)†
jk
− Â(m)†

jk
Â(n)
lp
ρS ) + h.c.

Let,

Â =
∑
n

∑
j

∑
k :k>j

Â(n)
jk
.
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In terms of this operator,

ρ̇S = −ı[Ĥe� , ρS] + ÂρSÂ† −
1
2

(
Â†ÂρS + ρSÂ

†Â
)
,

which is Equation 4.23. Let us examine the operator Â:

Â =
∞∑
n=0

∑
j

∑
k :k>j

√
2πσ 〈j | ĉn + ĉ†n |k〉γ (∆jk ) |j〉 〈k | .

We have ordered the eigenstates by their electron number, so that in this sum |k〉 is always

a state with at least as many electrons as |j〉. Consequently, 〈j | ĉ†n |k〉 = 0, and

Â =
√

2πσ
∞∑
n=0

∑
j

∑
k :k>j

γn (∆jk ) |j〉 〈j | ĉn |k〉 〈k | .

If we strengthen our second rotating wave approximation (recall the discussion preceding

Equation D.4) by assuming not merely γn (∆lp ) ≈ γn (∆jk ), but that γn is independent of

energy, then this expression can be simpli�ed to,

Â =
√

2πσ
∞∑
n=0

γnĉn,

which is Equation 4.24.
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