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Abstract

We introduce a sequence of increasingly sophisticated Monte Carlo meth-
ods to treat a set of problems involving random walks, the Ising model
and the φ4 quantum field theory. We begin with a series of exercises in
which we try to predict and measure the behavior of simple, non-reversing
and self-avoiding random walks. In the process, we prove a few analytic
results, one of which we were unable to locate in the literature. We then
study the two dimensional Ising model in some detail, discussing the ana-
lytical difficulties and comparing exact results with Monte Carlo estimates.
Throughout this part of the thesis, we focus on the techniques which will
later be employed to more frontier problems, including sampling schemes
(simple, importance, Markov-chain) and statistical analysis of Monte Carlo
data.

In the latter part of the thesis, we apply the tools learned thus far to the
φ4 quantum field theory. We begin with a short introduction to QFT through
the path integral formalism, but quickly point out the equivalence of field-
theoretic and statistical problems and from then on focus on the Landau-
Ginzburg model. We corroborate the general result of Schaich (2006) in two
dimensions, the nonlinear dependence of the coupling constant [λ/µ2] on λ,
but point out that his implicit acceptance of finite size scaling assumptions
may have led him to underestimate the magnitude of the effect.
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Chapter 1

Introduction

This thesis is the travel log of a journey through the applications of Monte
Carlo methods in physics. The original aim of this journey was the veri-
fication of the work of Charng (2001), who placed an upper bound on the
probability of multiparticle production in the four-dimensional φ4 quan-
tum field theory. The outline of the path leading there was to start by
learning some programming, perhaps through the implementation of ran-
dom walk programs, move on to the Ising model for a couple months, cor-
roborate the general thrust of the findings of Schaich (2006), and finally
reproduce the work of Charng.

As we should have perhaps expected, there were quite a few detours on
the way. The supposedly brief adventure with random walks grew into the
first full chapter, which constitutes an introduction to the simplest Monte
Carlo methods. It begins with an explanation of how to calculate π using
a compass, a ruler and a bucket of rice, follows up with a discussion of the
solved problems of the simple and non-reversing random walks, and cul-
minates with our first encounter with the so-called classical n-vector model,
in the guise of the self-avoiding walk (the n = 0 case). The n-vector model,
which will prove to be a recurring theme, defeats us squarely in this chap-
ter, demonstrating the severe limitations of the simple sampling approach
used thus far.

Chapter 3 is devoted to developing the dynamic Monte Carlo method.
This method allows us to deal with distributions that are impossible to sam-
ple directly, often because just writing them out would take an amount of
time on the order of the age of the universe. Such distributions turn out
to be prevalent and incredibly important: they include the Boltzmann dis-
tributions governing the behavior of all realistic models in statistical me-
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chanics. To treat them, we develop sampling algorithms which mimic
the dynamics of a system in thermal equilibrium, including the famous
Metropolis algorithm. Most of this development is done in the context of
the Ising model, one of the simplest models exhibiting a phase transition.
We quote some parts of its (very difficult) exact solution and compare them
with the results of our simulations. The dynamic algorithms perform very
well, thereby settling our score against the n-vector model, of which Ising
is the n = 1 case.

By the end of Chapter 3, we are already halfway through our tour of
Monte Carlo (in terms of pages, at least), so it’s only fitting that we should
finally discuss quantum field theory. We offer only a very brief glimpse of
this grand topic: we introduce the path integral formulation of quantum
mechanics in a successful attempt to save the Klein-Gordon equation, run
into the φ4 theory (Klein-Gordon’s more interesting cousin) and immedi-
ately jump back to the familiar ground of statistical mechanics by exploit-
ing the formal equivalence between a path integral and a partition function.
We show that the φ4 is equivalent to the Landau-Ginzburg model, which
is in turn an approximation to the Ising model. It takes us a full section to
iron out the details of how to transplant the Landau-Ginzburg on a lattice,
but when we succeed, the entire machinery of Chapter 3 is at our disposal.

We proceed to use this machinery, and in particular a technique known
as finite size scaling, to explore the principal subject of Loinaz and Willey
(1998), Bednarzyk (2001) and Schaich (2006): the critical coupling of the φ4

theory in two dimensions, [λ/µ]crit. In the process, we make a leap of faith
by extending finite size scaling beyond its proper domain of validity; this
does reproduce the results of Schaich, but leaves us wondering whether
they’re correct.

After all the detours, we turn to the work of Charng very late—too late
to make sense of how, exactly, he proposes to use data from lattice simula-
tions to calculate the quantities of interest. We struggle with the problem
for a while, but in the absence of references (the “forthcoming” Physical Re-
view article on the topic expounding on the 1996 PRL by Mawhinney and
Willey was never published) are forced to capitulate.

The lemmas postulated in Chapters 2–4 are proven in Appendix A.
Most of the code used in our simulations, including the shell scripts for
submitting jobs to the computing cluster, can be found in Appendix B. Fi-
nally, Appendix C is a guide to the literature I found helpful in completing
this project.
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Chapter 2

Static Monte Carlo

In this chapter, we present the results of a number of simple computer ex-
periments performed as exercises in the summer of 2008. All of them are
examples of what are known as static Monte Carlo methods: we generate
samples directly from a known distribution and use sample averages as es-
timators of population averages. By the end of this chapter, both the power
and the limitations of this technique should become apparent.

2.1 Simple Example: Estimating π

One of the simplest (but still instructive) applications of the Monte Carlo
method is estimating the value of π using only a compass, a ruler and a
large number of rice grains.1 The procedure is as follows:

1. Draw a circle inscribed in a square. Call the circle’s radius a. These
shapes must be sufficiently large so that the rice grains can be consid-
ered essentially point-like.

2. Distribute rice grains uniformly over the surface of the square.

3. Count how many rice grains you threw, and how many of them fell
within the circle.

Since the rice grains were distributed uniformly over the square, the ratio
of the number that fell within the circle to the total should be equal to the

1This section is largely inspired by the opening section of Krauth (2006). A similar ex-
periment was also carried out by Bednarzyk (2001).
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2a

Figure 2.1: Monte Carlo estimation of π.

ratio of the circle’s area to that of the square:

Ncircle

Nsquare
=

Acircle

Asquare
=

πa2

(2a)2
=
π

4
. (2.1)

Consequently,

π ≈ 4
Ncircle

Nsquare
. (2.2)

While elegant in principle, this procedure quickly becomes rather tedious
to carry out, even for relatively small numbers of rice grains. Fortunately,
it is easy to implement it on a computer, which will then only take sec-
onds to “throw” millions of “grains” by generating random numbers uni-
formly distributed on the square.2 A sample implantation is shown in Ap-
pendix B.2.1.

We intuitively expect that the quality of the estimate (call the estimate
η) depends on the number of rice grains thrown (call it x), but how quickly
does it improve? Every time a rice grain is thrown, it has a certain probabil-
ity (say θ) of falling into the circle. Let the two possible outcomes be ξ = 1
if the grain does fall into the circle, and ξ = 0 otherwise. Then the variance
of ξ is

Var(ξ) = 〈ξ2〉 − 〈ξ〉2 =
(
θ · 12 + (1− θ) · 02

)
− (θ · 1 + (1− θ) · 0)2 (2.3)

= θ(1− θ). (2.4)

2Random number generation is briefly discussed in Appendix B.1.2
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Since the variance of a sum of independent variables is equal to the sum
of their variances, the variance of Ncircle = Σξ is xVar(ξ) = xθ(1 − θ). The
variance of our estimate, η, is therefore

Var(η) = Var
(

4
Ncircle

Nsquare

)
= 16

xθ(1− θ)
x2

= 16
θ(1− θ)

x
(2.5)

(We used the facts that Var(cv) = c2Var(v) for any constant c, and that
x = Nsquare.) This might not look like much progress, since we don’t know
the value of θ. However, since θ is a probability, it lies in the closed interval
[0, 1]; and on this interval, θ(1− θ) < 1/4.3 Therefore,

Var(η) <
4
x
. (2.6)

In some sense, this answers the question posed at the head of the para-
graph. A more informative answer, however, can be obtained using Cheby-
shev’s inequality,4 which in our case states that

Pr(|η − π| ≥ ε) ≤ Var(η)
ε2

, (2.7)

where “Pr” stands for probability. It follows that the 68% confidence band
is no wider than

√
Var(η)/0.32. This is the smallest rigorous upper bound

that can be placed on the size of the confidence interval using only the
knowledge of the mean and variance of ξ.5

We perform a series of experiments for different numbers of iterations.
For each experiment, we report (in Table 2.1) the average of 100 trials as our
best estimate, and uncertainty calculated using Equation 2.7. Since we’re
using an average as the estimate, its variance is

Var(η̄) = Var
(
η1 + η2 + · · ·+ η100

100

)
=

Var(η)
100

<
1

25x
. (2.8)

The uncertainties quoted are the 68% confidence bands in the sense of
Equation 2.7, but with the variance of the sample mean, Var(η̄), used in-
stead of the variance of a single estimate, Var(η).

3Of course, we’re just “pretending” not to know θ: since the actual value is π/4, θ(1 −
θ) ≈ 0.17.

4Chebyshev’s inequality is proven in every probability course; see, for instance, DeGroot
and Schervish (2002, section 4.8).

5In this case, we actually know more than the variance of ξ: we know that its distribution
is binomial, and could calculate the confidence bounds directly from our knowledge of the
distribution. However, such knowledge is very rarely available in Monte Carlo simulations,
so we will not pursue this technique.
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Table 2.1: Estimates of π using the program. The best estimate is the average of the
results of 100 trials; the 68% confidence interval given by Chebyshev’s inequality
is given as an estimate of the uncertainty. For reference, the actual value is π =
3.14159265 . . .

Iterations (x) Estimate Run Time (s)

102 3.16(4) 2
103 3.15(2) 3
104 3.142(4) 2
105 3.141(2) 4
106 3.1414(4) 14
107 3.1416(2) 48

A disappointing feature of this method is that to improve the precision
of the estimate by a factor of 10, we need to increase x by a factor of 100.
Even though the running time is only linear in x (as the computer scien-
tists would say, it’s O(x): of order x), this is still a hopelessly slow method
of estimating π. For comparison, using Wallis’ formula (see Sondow and
Weisstein 2008):

π

2
=

2 · 2
1 · 3

· 4 · 4
3 · 5

· 6 · 6
5 · 7
· · · (2.9)

gives a result accurate to within 10−4 after about 3 · 105 multiplications;
achieving similar precision using our algorithm required more than 2 · 109

multiplications—not including the operations performed in generating ran-
dom numbers!6

Nonetheless, the Monte Carlo method is widely used (though not for
estimating π). There are problems for which it offers better performance
than any traditional numerical technique, and even some for which it’s the
only feasible approach. The most famous example of a problem that be-
comes the former is evaluating integrals in many dimensions. Our focus in
this thesis, however, will be on the latter. The first example of such a prob-
lem is the estimation of certain properties of self-avoiding random walks
(SAWs), which will be discussed in the next section.

6Averaging 100 trials, each consisting of 107 iterations, in each of which we need to
square the two coordinates of a point to find whether it fell within the circle or not.
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2.2 Random Walks

Random walks are used in many areas of applied mathematics, from finan-
cial modeling to the study of polymer structure (see Sethna, 2006, Exercises
to Chapter 2 for an introduction to a broad array of applications). They are
also of theoretical interest, as some of the simplest systems exhibiting crit-
ical phenomena. In the context of Monte Carlo work, it’s worthy of note
that every sequence of estimates we generate (such as the estimates of π
from individual trials in the previous section) constitutes a random walk.

In this section, we will consider only random walks on a discrete rect-
angular lattice, a grid of points in a d-dimensional Cartesian space invariant
under translation by a distance of r = 1 in the direction of any of the basis
vectors. This restriction makes both numerical simulations and the analyti-
cal treatment much simpler, but at the apparent price of making the models
inapplicable to most situations of practical interest: Brownian motion, for-
aging ant dynamics, polymer folding and other phenomena modeled as
random walks generally don’t take place on a rectangular lattice. There is
some truth in such an accusation, but there is also less to it than meets the
eye. For one thing, random walks on a lattice are still of inherent interest as
a mathematical puzzle, relatively simple systems whose behavior (even in
terms of statistical aggregates) is not always possible to predict. More im-
portantly, however, random walks can be divided into so-called universality
classes; in the vicinity of the critical point, the behavior of all systems be-
longing to one universality class is the same. For random walks, the critical
point corresponds to the asymptotic limit as the number of steps becomes
infinite. A random walk’s membership in a universality class depends on
dimensionality, symmetries and other general properties, but, somewhat
surprisingly, is independent of whether the space in which the walk takes
place is discretized. This implies that lattice walks may be good—in some
respects perfect—models of apparently much more complicated systems.

We will not discuss the concept of universality in greater detail in this
work, but the interested reader is referred to Sokal (1994) for a brief dis-
cussion in the context of random walks, or Sethna (2006, Chapter 12) for
a general introduction. Because of the intimate connection between uni-
versality and critical behavior, it is a major theme of books such as Binney
et al. (1992). In the rest of this section, we discuss three types of random
walks: the simple random walk, the non-reversing random walk and the
self-avoiding random walk.
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2.2.1 Simple Random Walk

The most natural question to ask about a random walk is, how does its
expected squared end-to-end distance, 〈R2

N 〉, vary with the size of the walk,
N? For the conceptually simplest of them, the unbiased, unconstrained
random walk, this question is easily answered analytically—even in the d
dimensional case!7 Notice that the length, RN , of a N -step walk is given by

RN =
N∑
i=1

si, (2.10)

where si is the ith step, which we will take to have length 1 and have the
same probability of pointing in each of the 2d possible directions. It follows
that

〈R2
N 〉 = 〈(RN−1 + sN )2〉

= 〈R2
N−1〉+ 2〈RN−1 · sN 〉+ 〈s2

N 〉
= 〈R2

N−1〉+ 1

(2.11)

The transition to the last line deserves some comment. Clearly, s2
i = 1

regardless of which of the possible values si takes, so 〈s2
N 〉 = 1. How-

ever, because the walk is unbiased, RN−1 · sN takes on nonzero values of
RN−1 and −RN−1 with equal probabilities; consequently, its expectation is
0. Since R2

1 = s2
i = 1, it follows that

〈R2
N 〉 = N. (2.12)

Note the curious result (which does not generalize to constrained walks)
that the number of dimensions doesn’t affect the expected distance from
the origin to the walk’s endpoint.

As an exercise, one can write a simple simulation verifying this result.
The most direct approach is through enumeration: writing down every pos-
sible walk up to a given length. Because the number of walks increases ex-
ponentially with length (there are 4dN walks of givenN ), this approach can
only be used for relatively short walks. Nonetheless, as one would expect,
the results of the simulation were in perfect agreement with prediction.

Another approach is a Monte Carlo method, in which a representative8

sample is used instead of the entire distribution. We generated 1,000,000

7The argument given here is along the lines of Sethna (2006, chapter 2).
8By representative, we mean that every possible walk of a particular length was equally

likely to be generated.
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Table 2.2: Regression results for the unconstrained random walk.
Walk Observed 〈R2

N 〉 Expected 〈R2
N 〉

d = 1 1.0000(1)N N
d = 2 0.99983(8)N N
d = 3 1.00003(6)N N

walks of each length between 1 and 150 steps in one, two and three di-
mensions, and regressed R2

N on N .9 A subtlety arose here: is it advisable
to use ordinary least squares, or should we take the variances of the data
points into account and run generalized least squares? An induction argu-
ment similar to the one used in deriving R2

N can be used to show that the
variance of a random walk of length N is

σ2
N = σ2

N−1 + 4(N − 1). (2.13)

Since σ2
1 = 0,

σ2
N = 4(N − 1) + 4(N − 2) + 4(N − 3) + . . .+ 4(N − (N − 1))

= 4(1 + 2 + 3 + . . .+N − 1) = 2N(N − 1).
(2.14)

The data points are averages, so their variances are σ2 = σ2
N/N = 2N−2. In

the light of this fact, we weighted each data point by 1/σ2 in the regression.
The plots of our data are shown in Figure 2.2; the regression results are in
Table 2.2. The agreement between experiment and prediction is perfect.10

The simple random walk has many fascinating properties: one could
ask, how likely is it that a walk will return to its origin? How long, on av-
erage, would one have to wait for this to take place? What is the relation-
ship between the walk and the diffusion equation? These questions, how-
ever, are not related to our major theme of computer simulation, and the
interested reader is referred to analytical treatments such as that of Spitzer
(2001).

9The simulation code can be found in Appendix B.2.2. All regressions were carried out
in Mathematica, using the commands LinearModelFit or NonlinearModelFit.

10What about the value for d = 2 not being within uncertainty of the prediction? This is
actually expected: our measure of uncertainty is the standard deviation of the estimate, so
about one in three results should fall outside of this range, as is indeed the case.
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Figure 2.2: 〈x2〉 as a function of N for the random walk in one, two and three
dimensions. Each data point is the average over a sample of 1,000,000 walks.
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2.2.2 Non-Reversing Random Walk

The first constrained random walk we will consider is the non-reversing
random walk (NRRW). It is identical to the simple random walk of the pre-
vious section, except for the fact that it never reverses its last step (si 6=
−si−1). While less common in applications than the simple and self-avoiding
varieties,11 simulating the NRRW was a natural step towards more compli-
cated constrained walks. (One can think of both the NRRW and the self-
avoiding walk as walks that avoids crossing m of their last steps, with
m = 1 for the NRRW and m = ∞ for the SAW.) Additionally, the non-
reversing random walk has been studied in earlier theses on lattice simula-
tions (Bednarzyk, 2001; Schaich, 2006).

Analytical Treatment The behavior of this walk in one dimension is not
particularly interesting: 〈R2

N 〉 = N2, since the walk must continue in the
initially chosen direction. As the dimensionality of the walk increases, we
would expect the difference in end-to-end distance between a NRRW and
the simple walk to decrease, because the set of excluded moves (direc-
tion reversals) becomes an ever-smaller subset of all the possible moves.
To derive the exact prediction, we will proceed by induction, like in Sec-
tion 2.2.1.12 For arbitrary N ,

〈R2
N 〉 = 〈(RN−1 + sN )2〉, (2.15)

= 〈R2
N−1〉+ 2〈RN−1 · sN 〉+ 〈s2

N 〉. (2.16)

Since 〈s2
N 〉 = 1,

〈R2
N 〉 = 〈R2

N−1〉+ 2〈RN−1 · sN 〉+ 1 (2.17)

= 〈R2
N−1〉+ 2〈(RN−2 + sN−1) · sN 〉+ 1 (2.18)

= 〈R2
N−1〉+ 2〈RN−2 · sN + sN−1 · sN 〉+ 1 (2.19)

= 〈R2
N−1〉+ 2〈RN−2 · sN 〉+ 2〈sN−1 · sN 〉+ 1 (2.20)

Note the similarity between Equations 2.17 and 2.20: we stepped down the
index on the Ri in exchange for a term of the form 2〈sN · si〉. This process

11One of the few applications we are aware of is to the dynamics of foraging ants (see
Walker et al., 2006).

12We could not find a reference containing the expression of interest; the derivation that
follows is our own.
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can be continued until we’re left only with R1 = s1:

〈R2
N 〉 = 〈R2

N−1〉+ 2〈sN−1 · sN 〉+ 2〈sN−2 · sN 〉+ · · ·+ 2〈s1 · sN 〉+ 1,

(2.21)

= 〈R2
N−1〉+ 1 + 2

N−1∑
i=1

〈sN−i · sN 〉. (2.22)

To proceed, we need an expression for 〈sN−i · sN 〉 in terms of d, i and N .
Its derivation is somewhat involved, so it was relegated to Appendix A.1;
here, we only quote the result.

Lemma 1. For a non-reversing random walk on a rectangular, d dimensional
lattice,

∀i ∈ N < N 〈sN−i · sN 〉 =
(

1
2d− 1

)i
(2.23)

Using Lemma 1, we rewrite Equation 2.22 as

〈R2
N 〉 = 〈R2

N−1〉+ 1 + 2
N−1∑
i=1

(
1

2d− 1

)i
. (2.24)

Keeping in mind that R1 = s1 ⇒ 〈R2
1〉 = 1, we perform an induction using

the preceding equation, and obtain

〈R2
N 〉 = N + 2

N−1∑
i=1

i

(
1

2d− 1

)N−i
. (2.25)

Finite sums are generally troublesome, but for this one Mathematica finds a
concise form:

〈R2
N 〉 = N − 2N + 2d− 2Nd− 1 + (1− 2d) (1/(2d− 1))N

2(d− 1)2
. (2.26)

The formula is more complicated than that for the simple random walk,
but it is an exact closed-form expression (something that remains elusive
for the SAW, say), and it reduces nicely in the d = 2 and d = 3 cases which
are of primary interest:

〈R2
N 〉 =

{
2N + 31−N

2 − 3
2 for d = 2,

3
2N + 51−N

8 − 5
8 for d = 3.

(2.27)
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Table 2.3: Regression results for the non-reversing random walk.

Walk Observed 〈R2
N 〉 Expected 〈R2

N 〉
d = 2 2.000(1)N + 0.5009(2) · 31−N − 1.501(1) 2N + 0.5 · 31−N − 1.5
d = 3 1.5000(8)N + 0.1245(1) · 51−N − 0.6246(8) 3

2N + 0.125 · 51−N − 0.625

Simulations We performed Monte Carlo simulations of the d = 2 and
d = 3 NRRW, similar to the ones carried out for the simple random walk.
For each size from 1 to 150 steps, 1,000,000 walks were generated and
their average end-to-end distance squared was recorded.13 In fitting to our
model, Equation 2.27, we would like to use a weighted regression, since we
expect the variance of the walk lengths to increase withN ; however, the ex-
act functional form of the variance is likely difficult to derive.14 Therefore,
we will use the sample variance as an estimate of the population variance.
The regression results are in Table 2.3; they are in good agreement with
predicted values.

The reader may be curious as to how the exact model of Equation 2.27
compares with the heuristic model of Schaich (2006, p. 12):

〈R2
N 〉 ≈ N

(
1 +

∑
i

1
di

)
. (2.28)

To this end, we regressed our data on both models and plotted the regres-
sion residuals (see Figure 2.3). The differences are noticeable for both the
shortest (N < 5) and the longest (N > 80) walks; there’s a trend in the
residuals. The problem is exacerbated if we weigh the data points by their
uncertainties, since the neglected aN−1 term is most important for short
walks, which also have the smallest spread of lengths.

2.2.3 Self-Avoiding Walk

The self-avoiding random walk has been extensively studied, primarily as
a model for linear polymers in a good solvent, such as DNA or proteins.

13Part of the simulation code can be found in Appendix B.2.3.
14There is one more nagging problem: the variance of 〈R1

1〉 equals zero identically, so
its inverse cannot be used as a weight. We approximated this variance as 0.001 for the
purposes of the regression, two orders of magnitude below the smallest nonzero variance
in the data set.
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Figure 2.3: Regression residuals for the two (a) and three (b) dimensional non-
reversing random walk. The blue circles are the exact model and the violet
squares—Schaich’s heuristic approximation. As expected, the heuristic model per-
forms poorly for short walks. (A weighted regression was used to estimate the
exact model, but an unweighted one was used for the heuristic one, for reasons
explained in the text.)
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It turns out that these substances belong to the same universality class as
the SAW, implying that some of their critical (long-chain limit) properties
should be similar: share the same functional form and leading asymptotic
behavior. These properties include the mean squared end-to-end distance
〈R2〉, but also the mean square distance of a monomer from the endpoints
and certain more exotic quantities (interpenetration ratios, gyration radii,
etc—see Section 2 of Sokal 1994).

Unfortunately, it turns out that the self-avoiding walk is much more
difficult to treat analytically than either of the random walks we have con-
sidered thus far. In fact, exact expressions aren’t known for any of the
quantities referred to in the previous paragraph. This is not for want of
effort (see Madras and Slade, 1996, for a review of the mathematical liter-
ature on the topic). Consequently, numerical methods have been used to
provide approximations. Foremost among these is Monte Carlo simula-
tion:15 an algorithm is used to generate a representative sample of all SAWs
of a given length, and the quantity of interest is estimated using the sample
average.

Monte Carlo Algorithms for the SAW The easiest way to generate a sam-
ple of self-avoiding walks is by simple sampling: generate a sample of un-
constrained random walks (those of Section 2.2.1) by building each step
by step, from the origin, and reject all those which intersect themselves on
the way. This method is both conceptually clean and very easy to imple-
ment. The only difficulty with it is the attrition rate of the walks: the longer
our simple random walk, the more likely it is that it intersects itself some-
where. In fact, it takes roughly eλN attempts to generate a self-avoiding
walk of length N using this method, where λ ≈ 0.25 in three dimensions.16

We can lower λ for d = 3 to ≈ 0.07 by using non-reversing walks instead
of simple ones, but that’s essentially the limit of this method: it still takes
about 1,000 attempts to generate a single walk of N = 100!

An appealing idea is to use inversely restricted sampling: after each step,
check which steps would lead to an intersection on the next one; then,
choose the next step only from among those which do not result in an in-
tersection. This was the method used by Schaich (2006, Section 3.2.2 and
Code Snippet C.3) in his analysis. Unfortunately, the inversely restricted

15Although series expansions and renormalization group methods are also used.
16This estimate is from Sokal (1994, p. 20); his review article is the primary source for this

section. Both the expression and the λ value are only approximate because of the analytical
intractability of the SAW.
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1/4 . 1/9 . 2/3

Figure 2.4: This figure depicts all of the possible two-dimensional SAWs of length
4 which begin with a step up. Notice that the Rosenbluth-Rosenbluth Algorithm
produces the four walks to the right of the red line with higher probability (2/54)
than the walks to the left of the red line (1/54). Adapted from Rosenbluth and
Rosenbluth (1955).

sampling algorithm suffers from a complication that Schaich overlooked—
it does not generate a uniform sample of all possible self-avoiding random
walks. In particular, tightly wound walks are overrepresented in the sam-
ple, as explained in Figure 2.4. If one chooses to use this algorithm, the
deviation from a uniform sample has to be addressed by weighting the
walks when calculating quantities of interest. These weights are somewhat
difficult to keep track of; worse yet, their sizes vary widely, so that the esti-
mate ends up being based mostly on a few walks with large weights. The
result is a rather large uncertainty. In the end, this method turns out to be
less efficient than simple sampling (Sokal, 1994, p. 24).

A variety of more efficient algorithms for the simulation of SAWs exist.
Dimerization algorithms concatenate two shorter SAWs to produce a long
one; enrichment algorithms make multiple copies of every sufficiently long
walk and continue on from there; and the many dynamic algorithms mod-
ify fragments of an existing walk to generate new ones. We have not imple-
mented any of these more sophisticated algorithms, since our examination
of random walks was only a preliminary exercise. Nonetheless, we encour-
age the interested reader to explore them further—the ingenuity of some of
these methods makes them fascinating.
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Table 2.4: Regression results for the self-avoiding random walk.
Dimension A ν

d = 2 0.828(6) 0.7436(8)
d = 3 1.108(7) 0.5947(7)

Simulation We studied the two- and three-dimensional self-avoiding walk,
using simple sampling of non-reversing random walks. The mean end-to-
end distance of a walk has the asymptotic form (Sokal, 1994):

〈R2
N 〉 = AN2ν

(
1 +O(N−∆)

)
(2.29)

where ν and ∆ are critical exponents. We estimated 〈R2
N 〉 for walks of

lengths up to 150 steps by averaging over 15,000 walks of each length.
We then fit the results to Equation 2.29, neglecting the correction-to-scaling
of O(N−∆).17 Unlike in earlier regressions, we had some qualms about
whether the data points ought to be weighted by their estimated uncertain-
ties. Equation 2.29 is only valid in the long-chain limit, so we would like to
rely primarily on long walks in estimating its parameters; but it is precisely
the long walks which have a large spread of 〈R2

N 〉 values, and consequently
a large uncertainty. When we eventually performed both procedures, our
concerns turned out to be justified: the trend in the weighted regression
residuals is evident (see Figure 2.5(a)). Consequently, the results reported
in Table 2.4 are based on ordinary least squares. Based on the trend in the
regression residuals, we expect our reported value in d = 2 to be an under-
estimate, and that in d = 3 an overestimate.

How do our results compare with literature values? The factor A is
not universal, and as such is rarely reported (not in any of the references
cited below). In two dimensions, it is believed that ν = 3/4 (Madras
and Slade, 1996, p. 19). In three dimensions, ν is variously estimated to
be ν = 0.57(1) (de Forcrand et al., 1987), ν ≈ 0.588 (Sokal, 1994) or ν =
0.5877(6) (Li et al., 1995).18 Our values are slightly biased in the expected
directions, probably due to the inclusion of shorter walks for which correction-
to-scaling factors cannot be neglected. Nevertheless, their agreement with
literature values is much better than Schaich’s, who reported ν = 0.6768(8)
in two dimensions and ν = 0.5228(5) in three.

17The correction-to-scaling exponent ∆ we ignore is estimated to be ∆ = 0.56(3) (Li et al.,
1995), and so significant only for short walks.

18Numerous other estimates exist—see Table II in Butera and Comi (1997) for seven
more—but they are not significantly different from the aforementioned.
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Figure 2.5: Regression residuals for the three dimensional self-avoiding random
walk: weighted (a) and unweighted (b). Ideally, residuals should spread out in
a cone, like those in Figure 2.3. The trend in (a) is indicative of the omission of
correction-to-scaling terms significant at low N . Note that this trend suggests that
our estimate of 〈R2

N 〉 (and hence ν) from the unweighted regression will be biased
upwards: after all, the confounding low-N terms are still present. The plots for
the two-dimensional walk are similar, but reflected about the x-axis, suggesting a
downwards bias in ν.
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2.3 Summary

Throughout this chapter, we have tried to tackle various problems using
the static Monte Carlo method. At the heart of this method lies the concept
of direct sampling: we were able to produce statistically independent out-
comes (rice grains on a square, random walks on a lattice) in accordance
with their true distribution. In other words, the probability of observing an
outcome in the sample was equal to the probability of observing it in the
population. Consequently, we were justified in using very simple statisti-
cal techniques—the sample mean served as an estimator of the population
mean, and the variance of the sample as an estimator of the population
variance. The success of this method is guaranteed by the weak law of
large numbers: as the size of the sample increases, our estimators converge
to the true value.

Direct sampling is “pure gold” (Krauth, 2006, p. 8), but as we saw in the
case of the self-avoiding walk, it will sometimes break down. The failure of
the simple and inversely restricted sampling techniques is worth ponder-
ing. What makes the self-avoiding walk problem so much more difficult,
from the point of view of the Monte Carlo method, than the simple and
non-reversing walks? The difficulty was our lack of knowledge of the true
distribution of the SAWs. Instead of generating samples from that distribu-
tion, we were forced to sample a related one, and apply weights to calculate
quantities of interest. In simple sampling, the weights were either 0 (if the
walk intersected) or 1 (if it didn’t); in inversely restricted sampling, they
took on a more complicated form. In both cases, however, we were forced
to discard as irrelevant an ever-increasing fraction of the information con-
tained in the sample.

Unfortunately, many distributions of interest can’t be sampled directly.
This includes the Boltzmann distribution,

p(i) =
e−βEi∑N
i e
−βEi

. (2.30)

If the number of states, N , is large, even just evaluating the denominator of
Equation 2.30 becomes a serious problem. Trying to generate states at ran-
dom and assigning appropriate weights to them leads to the same problem
that thwarted the inversely restricted sampling algorithm: the vast major-
ity of the weights will be close to zero, a few data points will dominate the
sample, and the uncertainty of any estimate will be prohibitively large.

It turns out that there are clever techniques for overcoming these prob-
lems. They will be the topic of the next chapter.
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Chapter 3

Dynamic Monte Carlo and the
Ising Model

In this chapter, we discuss dynamic Monte Carlo methods and their ap-
plication to the Ising model. While superficially unrelated to our ultimate
goal of studying quantum field theory, these techniques will be integral to
simulating the φ4 model. In fact, it will turn out that the φ4 theory is closely
related to the Ising model. We consider the Ising first, because it has a more
intuitive interpretation and has been well studied in the literature, allowing
us to verify the performance of our programs.

While all of the simulations described in this chapter are of course our
own, the theory is not. Virtually every factual assertion below is based
either on the sources cited or on the additional references discussed in Ap-
pendix C.

3.1 The Ising Model

The Ising model is traditionally interpreted as a simple model of a ferro-
magnet. With each point on a rectangular lattice we associate a spin, si,
which points “up” (si = 1) or “down” (si = −1). The energy of the system
is given by the Hamiltonian expression

E = −J
∑
〈i j〉

sisj −B
∑
i

si, (3.1)

where B is the external magnetic field, J is a constant (known as the cou-
pling constant) and the notation

∑
〈i j〉 is meant to indicate a sum over all
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pairs of neighboring spins. For simplicity, we will only consider the case
J = 1, B = 0, which already exhibits the phenomena we are interested in
studying.

What happens at the boundary of the lattice? We could assume that
boundary spins have fewer neighbors than mid-lattice ones, but that intro-
duces an asymmetry we would rather avoid. Real magnets are assumed to
be made up of a very large number of atoms carrying a magnetic moment,
only a tiny fraction of which will inhabit the boundary; effects in the in-
terior are much more important. To deal with this difficulty, we wrap the
lattice around: if it’s one dimensional, we make it into a loop (necklace),
if it’s two dimensional, we place it on a torus. Spins at the top of a lattice
become neighbors of those at the bottom, spins on the left are aligned with
those on the right, etc.1

The Ising model owes its enduring popularity to the fact that despite
its simple structure it exhibits a phase transition: its behavior undergoes
a qualitative change at a well-defined critical temperature, Tc. This transi-
tion is analogous to the one that takes place in ferromagnetic materials at
the Curie temperature. At high temperatures, the model is in the symmet-
ric phase, in which the spins are randomly aligned. (It’s called symmet-
ric because the large-scale properties of the system are unchanged under
spin reversal—compare Figures 3.1(a) and 3.1(b).) At low temperatures,
spontaneous magnetization takes place: the symmetry is broken and es-
sentially all of the model’s spins are parallel. At the critical temperature
(Tc = 2J/ ln(1 +

√
2) ≈ 2.269J in two dimensions), a switch from one

regime to the other takes place. This change is gradual, both in the model
and in real ferromagnets, so the transition is second-order.2 The magnitude
of the magnetization captures the degree to which the spins are aligned; it
is zero on one side of the phase transition and nonzero on the other. By
virtue of this property it is called the order parameter of the transition.

The Ising model is a classical system which can be treated using the
tools of statistical mechanics. Its observable properties are Boltzmann-

1This procedure can be performed in any number of dimensions, of course; it just cannot
be visualized in dimensions higher than two. Note that these so-called “periodic boundary
conditions” aren’t the only way to wrap up a lattice. Another popular choice are heli-
cal boundary conditions, which don’t have as neat a geometrical interpretation, but offer
some programming advantages. In this work we will use periodic boundary conditions
exclusively, but see Chapter 13 of Newman and Barkema (1999) for an overview of other
options.

2In a first-order phase transition, such as that between liquids and gases, the energy
suffers a discontinuity. Consequently, first-order transitions involve latent heat.
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(a) T = 4.8 > Tc (b) Inverted lattice at T = 4.8 > Tc

(c) T = 2.269 ≈ Tc (d) T = 1.2 < Tc

Figure 3.1: A 300 × 300 Ising model in the high, critical, and low temperature
regimes. Black corresponds to spin up and white to spin down, except in Figure (b)
where the lattice has been inverted.
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weighted averages of values corresponding to different configurations:

〈Q〉 =
1
Z

∑
µ

Qµe−βEµ , (3.2)

where the sum is over the possible configurations of the system and β ≡
1/kT (k is the Boltzmann constant). In the case of the Ising model, the
configuration is just the arrangement of the spins. The observable could be
magnetization per spin, say, or internal energy. The partition function is
defined the usual way,

Z =
∑
µ

e−βEµ . (3.3)

In principle, many quantities can be derived directly from the partition
function, as well as using Equation 3.2; for instance, the internal energy,

U = 〈E〉 =
1
Z

∑
µ

Eµe−βEµ =
1
Z

∂Z

∂β
= −∂ logZ

∂β
. (3.4)

The partition function, therefore, contains a wealth of information about
the model, and is of interest in and of itself. If we could somehow obtain
a workable expression for it, we would have effectively solved the Ising
model.

Can we obtain such an expression? Only in some cases and with great
ingenuity. We will limit ourselves to a historical sketch and refer the reader
to other sources for the mathematical arguments, as they are too compli-
cated to be presented here.3 An exception could be made for the one-
dimensional model solved by Ising himself, in his 1925 doctoral disserta-
tion. Unfortunately, the d = 1 case is not interesting—it does not exhibit the
phase transition. This was the disappointing conclusion of Ising’s disserta-
tion which led him to abandon the model. However, in 1936, Rudolf Peierls
proved that in the two-dimensional model a phase transition was guaran-
teed to exist at some temperature; five years later, Hendrick Kramers and
Gregory Wannier showed what this temperature must be, assuming that
it is unique. Finally, in 1944, Lars Onsager found an analytic expression
for the free energy per lattice site, F = limN→∞ Z/N , in two dimensions,
thereby solving the model in this regime. His solution leaves something
to be desired: it’s infamously difficult to follow, and even the most elegant

3An introduction to the Ising model as a mathematical problem, including the proofs of
Peierls and Kramers-Wannier discussed below, can be found in Cipra (1987).
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of its later simplifications “would take at least a chapter of rather techni-
cal and unilluminating manipulations to duplicate” (Sethna, 2006, p. 166).
The three dimensional Ising model presents an even grimmer picture: it re-
mains unsolved to this day, as do more complicated two-dimensional vari-
ations (theB 6= 0 case, and all models assuming interactions between spins
which aren’t nearest neighbors). Some variants of the three-dimensional
and long-range interaction models have been shown to be NP-complete (Is-
trail, 2000), suggesting that no simple analytical solution to these problems
exists.

The situation facing us, then, is similar to the case of the random walk:
the very basic variants can be treated analytically, but the difficulty of the
problem increases rapidly as we consider seemingly slight complications.4

We can again imagine two numerical approaches to the problem: an enu-
meration of all the possible states of the system (analogous to enumerating
all random walks up to a certain length) or sampling the Boltzmann proba-
bility distribution using a Monte Carlo technique. Enumeration, however,
is almost as hopeless as the analytical approach: even a 16 × 16 system,
rather small if we’re interested in probing the thermodynamic limit, has
2256 ≈ 1077 states! Monte Carlo simulation, therefore, is the only way to
go.5

3.2 Markov Chain Monte Carlo

In general, after a Monte Carlo simulation of a statistical system, we calcu-
late quantities of interest from the formula

〈Q〉 =
∑N

i Qi p
−1
i e−βEi∑N

i p
−1
i e−βEi

, (3.5)

where pi is the probability of a state being generated in the simulation and
N is the size of the sample. In simple sampling, we let pi = 1 for all i. But
statistical systems in equilibrium spend most of their time in a small subset
of all available states (this is especially obvious at low temperatures, where

4The similarity of the two models is not entirely coincidental, as they turn out to be
closely related: they are the n = 0 (SAW) and n = 1 (Ising) cases of the so-called classical
n-vector spin model (according to Gaspari and Rudnick 1986, this relationship was first
noticed in de Gennes 1972).

5There is actually another large family of approximate approaches to the Ising model:
perturbative series expansions of the partition function, such as high-temperature expan-
sions or expansions in 4− ε dimensions. We will not be concerned with them in this work.
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just one state, the ground state, becomes dominant). As the reader may re-
call, we concluded the previous chapter with the unhappy observation that
simple sampling Monte Carlo techniques break down precisely in this case,
namely when the probability distribution to be evaluated is dominated by
a few large terms that will be poorly represented in the sample. How then
can we use a Monte Carlo method in this case? What we would like to do
is make our simulation mimic the dynamics of a system in equilibrium and
sample the important states, so that pi = exp(−βEi)/Z and

〈Q〉 =
1
N

N∑
i

Qi. (3.6)

Very appropriately, this approach is known as importance sampling. To
carry it out, we will introduce a new technique—Markov chain sampling.

A Markov process is a mechanism for producing a new state ν from an
old one, µ, with a probability P (µ → ν) depending only on the states ν
and µ.6 Mathematically, it is specified by a transition matrix containing the
probabilities of getting from any state to another:

T =


P (1→ 1) P (1→ 2) · · · P (1→ n)
P (2→ 1) P (2→ 2) · · · P (2→ n)

...
...

. . .
...

P (n→ 1) P (n→ 2) · · · P (n→ n)

 . (3.7)

Since the entries, P (µ → ν), are probabilities, each row sums to unity. A
chain of states is generated by repeatedly applying this matrix to a vec-
tor of probabilities, x. If a Markov process is to generate a chain of states
appearing with Boltzmann probabilities, it must satisfy two conditions.

Firstly, it must be ergodic: it must have a nonzero probability of generat-
ing each possible state of the system, since the Boltzmann probabilities for
each state are strictly positive. This doesn’t mean that all entries of T must
be nonzero, but there must be a way to transition from any state µ to any
other, possibly in multiple steps.

Secondly, the Markov process must satisfy the condition of detailed bal-
ance. This condition is intended to eliminate limit cycles and guarantee that
the process has an equilibrium (stationary) probability distribution, i.e. a
probability vector x(t) that obeys

x(∞) = T · x(∞). (3.8)
6A more formal introduction to Markov chains, including rigorous proofs of the results

used here, can be found in Morningstar (2007).

32



In contrast, a limit cycle corresponds to

x(∞) = Tn · x(∞) (3.9)

for some n 6= 1. The condition of detailed balance is that

pµP (µ→ ν) = pνP (ν → µ) ∀µ, ν. (3.10)

This condition states that, on average, the we are equally likely to observe
a transition from µ to ν as its reverse. This cannot be true of all states in
a limit cycle, where the expected occupancy of states changes with time.
Summing both sides of Equation 3.10 over ν, we get∑

ν

pµP (µ→ ν) =
∑
ν

pνP (ν → µ). (3.11)

This equation states that the rates at which the system exits (LHS) and enters
(RHS) the state µ are equal, so the system is at equilibrium. Since the rows
of a transition matrix sum to unity, we can rewrite this equation as

pµ =
∑
ν

pνP (ν → µ). (3.12)

The probability distribution pµ for which this equation holds will be the
equilibrium probability distribution of the Markov process.

As long as these two conditions are satisfied, our Markov process will
have the desired equilibrium distribution, and will approach it exponen-
tially with the number of iterations.7 Just how quickly it converges to this
distribution is a valid question to which we will return when discussing
specific algorithms.

3.2.1 The Metropolis Algorithm

By far the most famous algorithm for the Ising model, which we have used
in the majority of our simulations of this system, is the Metropolis algo-
rithm. It is a single spin flip algorithm: a new state is created from an old
one through the flipping of only one spin on the lattice. To derive it, we pro-
ceed directly from the detailed balance condition, Equation 3.10, rewritten
thus:

P (µ→ ν)
P (ν → µ)

=
pν
pµ

= e−β(Eν−Eµ), (3.13)

7Proving exponential convergence would take us too far afield, but the interested reader
is referred to Newman and Barkema (1999), section 3.3.2, or Krauth (2006), section 1.1.4.
Their treatment was the inspiration for much of ours.
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where the last equality follows from the fact that we want to generate states
with their Boltzmann probabilities. We now break down the transition
probability P (·) into the probability of a move being selected, g(·), and be-
ing accepted, A(·):

P (µ→ ν)
P (ν → µ)

=
g(µ→ ν)A(µ→ ν)
g(ν → µ)A(ν → µ)

. (3.14)

We will select the spin to flip at random (with uniform probability), so that
the probability of a move being selected is the same for both the forward
and the backward move. We are left with the condition

A(µ→ ν)
A(ν → µ)

= e−β(Eν−Eµ). (3.15)

To make the algorithm efficient, we would like to accept the transition with
as high a probability as possible—otherwise, we would be wasting moves,
selecting spins only to discard them. Therefore, we set,

A(µ→ ν) =

{
1 if Eν ≤ Eµ,
e−β(Eν−Eµ) if Eν > Eµ.

(3.16)

This choice of the acceptance probability is what defines the Metropolis
algorithm. Since it’s a single spin flip algorithm, and the probability of
flipping a spin is always strictly positive, the Metropolis satisfies ergodic-
ity: any configuration can be generated with nonzero probability through
a sequence of spin flips. We derived the acceptance probability from the
detailed balance condition, which therefore must be satisfied as well. And
the ratio of the transition probabilities was set to the ratio of Boltzmann
factors, guaranteeing that the stationary distribution is the desired one.

Evaluating exponentials on a computer takes a relatively long time, so
an important practical consideration is that ∆E = Eν −Eµ has only 2d+ 1
possible values, which need be evaluated only once, at the beginning of
the simulation. If all of the selected spin’s neighbors are aligned opposite
to it, ∆E = −4Jd (since there are 2d neighbors, and for each of them the
interaction energy, −J

∑
〈i j〉 sisj , would fall by 2J); for every spin that’s

aligned in the same direction, a factor of 2J should be added to ∆E.

3.2.2 Equilibration and Autocorrelation

The Metropolis algorithm may have the desired stationary probability dis-
tribution, but two questions immediately arise. Firstly, what state should
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Figure 3.2: The magnetization of a 100 × 100 Ising lattice evolves in the course of
a Monte Carlo simulation conducted at T = 2.0 < Tc. The simulation equilibrates
after about 7,000 Metropolis steps per site.

we start with, and how long will the algorithm take to equilibrate (reach
the stationary distribution)? Secondly, how many iterations do we have
to wait to get two truly independent samples? The great advantage of the
methods of Chapter 2 was that each sample we generated was independent
of the others—now, two subsequent samples generated by the Metropolis
algorithm differ by only one spin flip, and can hardly be considered such.

Concerning the first question, it doesn’t matter very much what state
we start with, though starting with a state typical of the temperature we
would like to conduct our simulation at will result in faster equilibration.
One trick is to start a new simulation with the final state of an old one,
conducted at a similar temperature. We will know that a simulation has
equilibrated once the observables (magnetization, energy, etc) start varying
about a set value with a relatively small amplitude (see Figure 3.2). For
our simulations on a 100 × 100 Ising lattice, equilibration never took more
than 10,000 steps per site. Rarely, at low temperatures, the model may find
itself in a metastable state, an example of which is shown in Figure 3.3. The
energy of this state may be low, but other observables will generally deviate
far from their stable-state values. Such a state will decay eventually, though
in practice it may be necessary to rerun the simulation. Fortunately, the
distinctive appearance of the lattice makes it easy to sift out the simulations
which became trapped in such a state.

Once the simulation has equilibrated, how long do we have to wait to
get two independent samples? One way to answer this question is to use
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Figure 3.3: A 100× 100 Ising model in a metastable state.
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Figure 3.4: The magnetization autocorrelation function of a 100× 100 Ising lattice
simulated using a Metropolis algorithm at T = 2.4 > Tc. The autocorrelation time
is about 50 steps per site.
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the autocorrelation function of the magnetization,8 defined as

χac(t) =
∫

[m(t′)− 〈m〉][m(t′ + t)− 〈m〉] dt′. (3.17)

χac(t) measures the degree to which magnetization at times t and t′ is cor-
related; at short times, we expect the correlation to be significant, since we
only flip spins one at a time, but at long times it should average out to
zero. It turns out that for a Markov chain this function is characterized by
an exponential decay, the characteristic time scale of which is given by the
correlation time τ :

χac(t) ∝ e−t/τ . (3.18)

A plot of the autocorrelation function from one of our simulations is shown
in Figure 3.4—the exponential decay is evident. Various techniques could
be employed to derive an estimate of the correlation time from the data
used to produce this figure, but for our purposes a rough gauge will be
sufficient. Following Newman and Barkema (1999, p. 61), we will assume
that the number of independent samples obtained about is n ≈ tmax/2τ .
It’s important that this number be large enough for the intended statistical
procedures, and that no fewer than n measurements be taken in the course
of the simulation.

3.2.3 Data Analysis

Best Values We can generate estimates of a quantity of interest using
Equation 3.6: averaging values recorded in the course of the simulation.
This prescription is straightforwardly applied to the magnetization or en-
ergy, but how to estimate quantities not measured directly in the simula-
tion? Two which are of interest are the magnetic susceptibility per spin and
the specific heat per spin,

χ =
∂〈m〉
∂B

and c =
1
N

∂〈E〉
∂T

, (3.19)

respectively, where N is the size of the lattice and m its magnetization per
spin. Using a statistical mechanics trick,9 it’s possible to re-express these
quantities as

χ = βN
(
〈m2〉 − 〈m〉2

)
and c =

kβ2

N

(
〈E2〉 − 〈E〉2

)
. (3.20)

8Analogous functions can be defined for other observables.
9The trick is to introduce appropriately coupled terms to the Hamiltonian and then set

them to zero: see Newman and Barkema (1999), section 1.2.1.
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The expectations in the formulas above are easily computed from Equa-
tion 3.6.

Bootstrap In calculating the best values, we needn’t be concerned whether
our samples are independent or not: we just average all of the data points.
However, questions of independence become important if we want to use
the classical statistical approach of Chapter 2 to estimate the uncertainty of
our measurements. The variance of an average of n independent, identi-
cally distributed measurements is

Var(η̄) =
Var(η)
n

=
1
n

(
〈η2〉 − 〈η〉2

)
. (3.21)

It turns out that the appropriate generalization to our case is to set n =
tmax/2τ , the ratio of the simulation length to the autocorrelation time. This
classical approach, however, suffers from two limitations. Firstly, it relies
on the generally imprecise estimate of the autocorrelation time. Secondly,
and more importantly, it cannot be easily applied to quantities such as the
specific heat and magnetization. The problem is that our estimates of pairs
of quantities such as 〈E〉 and 〈E2〉 are derived from the same set of mea-
sured energy values, and are therefore correlated; we would be underesti-
mating the uncertainty if we used the usual uncertainty-propagation rules
to calculate the variance of their difference. There are elaborate techniques
designed to overcome these difficulties, but it’s easier to abandon the clas-
sical approach altogether and use so-called nonparametric statistics. The
procedure relevant to our problem is the bootstrap.

The idea behind the bootstrap is the following: say we computed some
statistic ρ̂ based on a data set of n points drawn from a distribution, F . The
standard error of our statistic is a function of the distribution F :

σ(F ) =
√

VarF (ρ̂(X1, X2, . . . , Xn)), (3.22)

where the Xi’s are n random variables drawn from the distribution. We
don’t know F , but we can approximate it by the sample distribution, F̂ ,
and so approximate σ(F ) using σ(F̂ ). Unfortunately, we generally don’t
know the expression for VarF (ρ̂)—except for the simplest distributions, it
doesn’t even exist in closed form. The solution is to estimate it using the
following procedure:

1. Draw a bootstrap sample from F̂ : pick n data points at random, with
replacement, from the data set.
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2. Calculate the bootstrap replication, ρ̂j : compute the value of ρ̂ from
the bootstrap sample.

3. Repeat the previous two steps a large number B times—“1000 would
not be excessive” (Newman and Barkema, 1999, p. 74)—obtaining
bootstrap replications ρ̂j for j = 1, 2, 3, . . . , B.

The estimate of the statistic’s error is then given by the standard deviation
of the bootstrap replications,

σ̂(F ) =

√√√√√ 1
B − 1

B∑
j=1

ρ̂j − 1
B

B∑
j=1

ρ̂j

. (3.23)

From our perspective, this technique offers two significant advantages over
a more traditional treatment. Firstly, we don’t need to modify it in any
way on account of our data points being correlated. Secondly, we don’t
have to worry about the propagation of uncertainty: we let our statistic ρ̂
be whatever final quantity we want to compute, such as χ or c. It’s only
disadvantage is that we need to record all of the values of energy (magne-
tization) produced in the course of the simulation, but this turns out not be
a practical problem.

Bootstrap has become rather popular since the seminal article by Efron
(1979), and there are many references available for those seeking a fuller ex-
planation of the method. Our treatment is based on Efron and Gong (1983);
a brief introduction in the context of Monte Carlo simulation of statistical
systems can be found in Newman and Barkema (1999, section 3.4.3). More
references and a longer discussion of the method are in Sprent and Smee-
ton (2007, section 14.3). A very friendly, applications-oriented text is Efron
and Tibshirani (1993).

3.3 Ising Metropolis: Simulation Results

We used an implementation of the Metropolis algorithm (see Appendix B.2.4
for the code) to perform a simulation of the 100×100 Ising model at twenty-
five equally spaced temperatures, kT = 0.2, 0.4, . . . , 5.0. Our algorithm
carried out 20,000 Metropolis steps per spin (“sweeps”) at each tempera-
ture, measuring magnetization per spin and energy per spin every other
sweep. We used the simulation results to estimate a number of quantities,
shown in Figures 3.5–3.7 and discussed below. All error bars are 1σ bands
derived from 1,000 bootstrapped samples.
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Figure 3.5: The magnetization per spin of a 1002 Ising model as a function of tem-
perature. The points are our measurements (error bars essentially invisible) and
the solid line is the exact solution for a system in the thermodynamic limit.

Magnetization As expected, the absolute value of the magnetization—
shown in Figure 3.5—is close to unity at low temperatures and close to
zero at high ones, with a rather sharp transition around the critical temper-
ature. It’s worthy of note that the curve is not symmetric about the critical
point: the magnetization is close to (though not quite) zero at T > Tc, but
approaches unity rather slowly for T < Tc. The approach to unity to the
left of the critical point is slow because the Ising model’s phase transition is
a continuous one. This mirrors the nature of the phase transition in ferro-
magnetic materials, which gradually lose their spontaneous magnetization
as they are warmed up to the Curie temperature. However, the sponta-
neous magnetization of a ferromagnetic material is exactly zero at T > Tc,
yet the magnetization in Figure 3.5 is noticeably above zero at T = 2.4 > Tc.
This is a so-called finite size effect: it is only observed because we’re simu-
lating the model on a finite lattice. In Onsager’s exact solution, assuming
J = k = 1, the magnetization is given by

|m| =
(

1− sinh−4

(
2
T

))1/8

(3.24)

and falls to zero at the critical temperature (Pathria, 1996, section 12.3).
Since we’re usually interested in the thermodynamic limit of an infinite
lattice, finite size effects amount to systematic error in Monte Carlo simu-

40



1 2 3 4 5
T

-1.5

-1.0

-0.5

u

Figure 3.6: The energy per spin of a 1002 Ising model as a function of temperature.
The points are our measurements and the solid line is the exact solution for a
system in the thermodynamic limit.

lations.

Energy The plot of internal energy per spin (Figure 3.6) shows predictable
behavior: at low temperatures, all of the spins are aligned, and each con-
tributes −2J to the energy. As the temperature increases, so does the en-
ergy, finally approaching zero in the high-temperature limit. There’s no
discontinuity in the energy at the critical temperature, although there is an
inflection point, suggesting that the first derivative (the specific heat) may
diverge. The agreement with the exact solution is excellent, even better
than in the case of the magnetization, as no finite-size effects are recog-
nizable. For completeness, we give the functional form of the exact solu-
tion (Plischke and Bergersen, 1994, section 5.1.4):

u(T ) = − coth
(

2
T

)(
1 +

2
π

(2 tanh2(2/T )− 1)K(q2)
)
, (3.25)

where K(m) is the elliptic integral of the first kind,

K(m) =
∫ π/2

0

dφ√
1−m sin2 φ

, (3.26)

and q is defined as

q(T ) =
2 sinh(2/T )
cosh2(2/T )

. (3.27)
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Figure 3.7: The specific heat and susceptibility of a 1002 Ising model as a function
of temperature. The solid line in (a) is the exact solution in the thermodynamic
limit; the solid line in (b) marks the critical temperature.

Specific heat and susceptibility The specific heat and magnetic suscep-
tibility (Figure 3.7) diverge at the critical temperature. Like the behavior
of the magnetization, this is unsurprising from a physical perspective: as
the temperature approaches Tc, the size of the spin clusters making up the
system increases. The flipping of these clusters results in large fluctua-
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tions in the energy and magnetization of the system. Since the specific heat
and magnetic susceptibility are the standard deviation of the energy and
the magnetization, respectively, they capture this phenomenon. The diver-
gence in the susceptibility is sharper than that in the specific heat; this be-
havior is a feature of the exact solution to the model as well. Much like the
asymptotic behavior of the SAW as N →∞ is described by Equation 2.29,

〈R2
N 〉 = AN2ν

(
1 +O(N−∆)

)
,

the asymptotic behavior of the specific heat and susceptibility of the Ising
model are described by

χ ∝ |t|−γ (3.28)
c ∝ |t|−α, (3.29)

where t = (T − Tc)/Tc while γ and α, like ν, are critical exponents charac-
teristic of an entire universality class.10 From the exact solution, we know
that γ = 7/4 and α = 0 (Pathria, 1996, p. 388), i.e. the susceptibility di-
verges exponentially and the specific heat—logarithmically. In fact, the full
expression for the specific heat, used to generate Figure 3.7(a), is (again
Plischke and Bergersen, 1994, section 5.1.4):

c(T ) =
4
π

(
1
T

coth
1
T

)2
{
K
(
q2
)
− E1

(
q2
)
−
(

1− tanh2 2
T

)
×

×
[
π

2
−
(

1− 2 tanh2 2
T

)
K
(
q2
)]}

(3.30)

where q and K(m) are defined as in the internal energy expression, Equa-
tion 3.25, and E1(m) is the complete elliptic integral of the second kind,

E1(m) =
∫ π/2

0

√
1−m sin2 φdφ. (3.31)

A closed form expression for the magnetic susceptibility is apparently not
known.

The error bars on our estimates are generally rather small. Notice, how-
ever, that the error bars on the susceptibility and specific heat plots increase

10Models with different values of J , and even models on lattices with different topologies
(triangular or hexagonal, rather than rectangular) will share the same values of these critical
exponents.
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Figure 3.8: The BCL cumulant, UL, of the Ising model as a function of tempera-
ture for a variety of lattice sizes. The solid line marks the critical temperature.
The lattices are of linear dimension L = 16, 32, 64, 128, 256, with steeper curves
corresponding to larger lattice sizes.

as the critical temperature is approached. This is due partially to the critical
fluctuations described in the previous section, and therefore a feature of the
model itself, but partially to an unfortunate phenomenon known as critical
slowing-down that afflicts the Metropolis algorithm. It turns out that as we
approach the critical point, the correlation time τ (see Equation 3.18) tends
to diverge, following a power law similar to Equation 3.28. It goes as

τ ∝ ξz, (3.32)

where ξ is the correlation length, the size of a typical cluster of correlated
spins. On a finite lattice, the correlation length can never exceed the lattice
linear dimension L, so we have τ ∝ Lz as T → Tc. For the Metropolis al-
gorithm, z = 2.1665 ± 0.0012 (Newman and Barkema, 1999, p. 91). As the
correlation time increases, we get fewer and fewer independent measure-
ments, and our confidence in the estimates suffers. Critical slowing-down
is a major obstacle to the study of the critical properties of the Ising model;
similar problems arise in other models, including the φ4 theory. We will
devote the next section to algorithms designed to overcome this difficulty.
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The BCL Cumulant This fourth-order cumulant, due to Challa et al. (1986)
and sometimes simply known as the Binder cumulant, is defined as

UL = 1− 〈m4〉
3〈m2〉2

. (3.33)

While not physically meaningful, this quantity has two interesting features.
Firstly, it can be used to distinguish between a first- and second-order phase
transition (Bhanot and Sanielevici, 1989). This may be a somewhat puz-
zling advantage: by definition, the internal energy is discontinuous at a
first-order phase transition but continuous at a second-order one. Why do
we need another indicator? The problem is that the discontinuity in the
energy is only observed in the thermodynamic limit of an infinite lattice,
L → ∞. On finite lattices of our numerical simulations, all phase tran-
sitions will appear to be second-order, at least judging from the behavior
of their internal energy. It turns out, however, that the BCL cumulant be-
haves differently near first- and second-order transitions, even on finite lat-
tices. If the transition is second-order, the cumulant smoothly varies from
its asymptotic value of ≈ 2/3 at T � Tc to ≈ 0 at T � Tc. If the tran-
sition is first-order, however, the cumulant has a minimum at the critical
temperature which becomes more pronounced as the size of the lattice is
increased.11 As we mentioned in Section 3.1, the Ising model has a second-
order phase transition. We used a mix of the Metropolis and Wolff algo-
rithms (discussed in Section 3.4) to evaluate the cumulant at 600 temper-
atures near the critical point—the results, shown in Figure 3.8, are as ex-
pected of a second-order transition. An example of a BCL cumulant plot for
a first-order transition can be found in Challa et al. (1986), Figure 16.

The second interesting feature of the cumulant is observed only in cer-
tain second-order transitions. The UL curves for different lattice sizes in-
tersect at a unique point, which corresponds to the critical temperature of
the infinite system. In the Ising model, finite-size scaling arguments can be
used to show that this phenomenon must take place—the interested reader
is referred to Binder and Heermann (2002, p. 46f.). Similar behavior is ob-
served in a variety of related models, and has been exploited in some stud-
ies of their phase transitions. Our results in Figure 3.8 exhibit it as well;
however, as we will see in the next chapter, the curves don’t quite intersect
at one point, resulting in a slight systematic effect if we use them for the
estimation of Tc.

11Observing how the properties of a simulated model vary with the lattice size is known
as finite size scaling. It is an important technique in Monte Carlo studies of statistical sys-
tems; we will discuss it more broadly in Section 3.5.
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3.4 Wolff Cluster Algorithm for the Ising Model

As we have seen, the Metropolis algorithm performs rather poorly in the
vicinity of the phase transition. The cause of this are the domains of spins
pointing in the same direction that form on a lattice near the phase tran-
sition (recall Figure 3.1(c)). These domains are difficult to flip one spin at
a time: except at the boundary, the probability of one of their spins being
flipped, should it be selected, is only

e−8J/Tc ≈ e−3.53 ≈ 0.03. (3.34)

The same acceptance probability is observed at low temperatures. In that
regime, however, a few sweeps of the lattice suffice to produce a diametri-
cally different state, as most of the misaligned spins are selected and turned
parallel to their neighbors, and a small group of new outliers is generated.
At the critical temperature, flipping a few spins in the interior of a domain
does not produce a new, statistically independent state: for that, entire do-
mains need to be reshaped, one unlikely spin flip at a time.

There are numerous algorithms for the Ising model designed to over-
come this problem, but all of them adopt the same basic approach. Instead
of flipping spins one at a time, these algorithms invert entire clusters of
them in each iteration. Here we describe one of the most famous cluster
algorithms, the Wolff algorithm, a variant of which we use in studying the
φ4 theory.

The idea behind the Wolff Algorithm is to build a cluster of spins by
starting with a single randomly selected spin and adding aligned ones to it
with a probability ρ that depends on the temperature. A single iteration of
the algorithm is as follows:

1. Choose a seed spin on the lattice and add it to the cluster.

2. Consider all the nearest neighbors of the seed spin. If a neighbor
points in the same direction as the seed spin, add it to the cluster
with probability ρ.

3. If any spins were added to the cluster in the previous step, consider
the nearest neighbors of each of them, and add them to the cluster
with probability ρ if they’re parallel to the seed spin.

4. Repeat step 3 until no new spins are added in an iteration.

5. Flip all spins in the cluster.
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Note that in step 3 a spin that is the nearest neighbor of multiple cluster
spins should be considered for addition multiple times.

To be a proper Monte Carlo algorithm, the Wolff must satisfy two con-
ditions: ergodicity and detailed balance. In the Ising model, the first of
these is satisfied as long as the probability of adding a spin to the cluster is
always less than one; for then, we may get from one arbitrary state to an-
other by choosing one “seed” spin at a time, adding none to the cluster, and
flipping. As in the case of the Metropolis algorithm, the detailed balance
condition is satisfied for a certain choice of ρ. In Appendix A.2, we argue
the following Lemma.

Lemma 2. The Wolff algorithm for the Ising model satisfies the detailed balance
condition if the probability of adding a spin to the cluster, ρ, is given by

ρ = 1− e−2βJ . (3.35)

The Wolff algorithm mimics the behavior of the Metropolis at high tem-
peratures, where the cluster will usually number only one spin. At low
temperatures, the cluster will span the lattice, so that an independent con-
figuration is generated in each iteration. In both of these environments, its
performance is comparable to that of the Metropolis algorithm, although it
is generally slowed down by the greater overhead. Near the critical point,
the autocorrelation time for lattice configurations generated from either al-
gorithms diverges as

τ ∼ ξz. (3.36)

However, z = 2.17 for the Metropolis algorithm and z = 0.25± 0.01 for the
Wolff—a marked improvement (Newman and Barkema, 1999, p. 101).

To test our implementation of this algorithm (contained in Appendix B.2.6),
we simulated a 300 × 300 Ising model at 100 evenly-spaced temperatures
kT = 0.05, 0.1, . . . , 5.0. The runs consisted of 5,000 iterations, each com-
prising 4 Metropolis sweeps and one Wolff flip.12 The magnetization, en-
ergy, specific heat and magnetic susceptibility plots obtained are shown in
Figures 3.9 and 3.10.

A more extensive discussion of this and other algorithms for the Ising
model can be found in Newman and Barkema (1999, Chapter 4) and Lan-
dau and Binder (2005, Chapter 5).

12This impressive numerical feat took Amherst’s Computing Cluster less than a minute.
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Figure 3.9: The magnetization and energy of a 3002 Ising model as a function of
temperature. The solid lines are the exact solutions in the thermodynamic limit.
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Figure 3.10: The specific heat and susceptibility of a 3002 Ising model as a function
of temperature. The solid line in (a) is the exact solution in the thermodynamic
limit; the solid line in (b) marks the critical temperature.
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3.5 Finite Size Scaling

As we have seen, the specific heat and magnetic susceptibility of the Ising
model exhibit characteristic behavior near the critical temperature. It turns
out that this behavior is systematically affected by the size of the lattice,
in ways that can be exploited to obtain estimates of quantities such as the
critical temperature and the critical exponents in the infinite-lattice limit.
One of the standard procedures for obtaining these estimates is finite size
scaling, to which we now briefly turn.

The idea behind the finite size scaling method is to exploit the existence
of a system’s critical exponents.13 Critical exponents describe the singular
behavior of various quantities near the critical point. We have seen some of
them already:

c ∝ |t|−α, (3.37)
χ ∝ |t|−γ , (3.38)
ξ ∝ |t|−ν , (3.39)

where we define t = (T − Tc)/Tc, as in Equation 3.28. Now, we can express
the divergence of the magnetic susceptibility (say) in terms of the correla-
tion length,

χ ∝ ξγ/ν . (3.40)

The behavior of the susceptibility in a finite system differs from that in the
thermodynamic limit because the correlation length cannot exceed L, the
size of the lattice. For a finite system, then

χL = ξγ/νχ0(L/ξ), (3.41)

where χ0(·) is a function with the properties

χ0(x) = constant for x� 1,

χ0(x) ∝ xγ/ν for x→ 0.

It is convenient to eliminate ξ from Equation 3.41 in favor of t by defining
the so-called scaling function of the susceptibility,

χ̃(x) = x−γχ0(xν). (3.42)
13Only continuous phase transitions are characterized by critical exponents; conse-

quently, finite size scaling can’t be applied to first-order transitions. Fortunately, all of the
transitions we consider in this work are second-order. We have shown this for the Ising
model already, using the BCL cumulant, in Section 3.3. We will use the same method to
show that it’s the case for the φ4.
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Substituting it into Equation 3.41 and using Equation 3.39 to eliminate ξ,
we get

χL = Lγ/νχ̃(L1/νt). (3.43)

All of the L-dependence of the susceptibility scaling function is shown ex-
plicitly in the previous equation. Therefore, if one plots

χ̃(L1/νt) = χLL
−γ/ν (3.44)

for a number of different lattice sizes and temperatures close to Tc, one will
obtain a single solid curve—as long as the values of ν, γ and Tc were chosen
correctly. Even relatively small deviations from the true values will result
in the curves separating. This point is illustrated Figure 3.11.

The finite size scaling method as presented, while shrewd, leaves some
questions open. In particular, how should we determine which values of
the parameters ν, γ and Tc result in the curves overlapping most closely?
In Figure 3.11, we judged the quality of the collapse by eye. A more quan-
titative approach is to choose the values of the parameters which minimize
the variance of the set of curves, defined as

σ2 =
1

xmax − xmin

∫ xmax

xmin

∑
L

χ̃2
L(x)−

(∑
L

χ̃L(x)

)2

dx. (3.45)

Evaluating this function is problematic, however. The finite size scaling re-
lations given by Equations 3.37–3.39 hold only in the vicinity of the critical
point, so if we choose too large an interval [xmin, xmax], we will obtain erro-
neous results. A somewhat radical response to this challenge is to focus on
the maxima of the scaling functions, which correspond to the maxima of the
susceptibilities. Say that the scaling function is maximized at x0 = L1/νt0.
Rewriting t0 in terms of the temperature and Tc, we obtain the following
condition:

T0 = Tc(1 + x0L
−1/ν), (3.46)

where T0 is the temperature at which the susceptibility is maximized for a
given L. Thus, it’s in principle possible to estimate Tc and ν (but not γ) by
regressing T0 on L. Of course, because we’re only using the maxima of the
scaling functions, rather than entire curves, this method will only work if
the quality of our Monte Carlo data is high. Since we’re probing the criti-
cal region, where quantities such as the susceptibility and the specific heat
fluctuate wildly (recall the large error bars in that region of Figures 3.7(a)
and 3.7(b)), obtaining satisfactory statistics may require long runs or look-
ing at many lattice sizes. An alternative is to minimize Equation 3.45 for a
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Figure 3.11: Finite size scaling applied to the Ising model: the scaling function of
the magnetization plotted against L1/νt. The critical exponent values were set to
their exact values, ν = 1 and γ = 7/4, in all of the above plots. The critical tem-
perature was varied as shown, dramatically affecting the quality of the collapse.
The lattices are L = 64, 128, 256, 512, and the data was generated using a mixed
Metropolis-Wolff algorithm. 52



sequence of narrowing intervals [xmin, xmax], and extrapolate to the limit of
zero width.

The solution to these dilemmas must depend on the system being stud-
ied. We will not discuss them further here, because we did not perform any
finite size scaling analysis of the Ising model beyond what was necessary
to plot Figure 3.11. However, the technique is used in the next chapter to
analyze data from φ4 theory simulations; we cover the statistical questions
in more detail there.

The explanation of finite size scaling in this section drew heavily on New-
man and Barkema (1999, section 8.3.2). The interested reader may also want
to consult Pathria (1996, section 13.5).

3.6 Summary

Despite its simple mathematical formulation, the Ising model has proven
to be a challenging and rewarding problem to study. Coming to grips with
it required the development of a new set of tools.

First, we have seen that a Markov process satisfying the conditions of
ergodicity and detailed balance can be used to sample the Boltzmann distri-
bution, and that we don’t need to evaluate the partition function to design
one. In some sense, the opposite is the case: we are able to evaluate certain
derivatives of the partition function, such as the expected energy, using the
Markov process. This fact will be critical in the next chapter, where we in-
vestigate the φ4 quantum field theory by studying the partition function of
an equivalent statistical mechanics system, the Landau-Ginzburg model.

Second, we have seen that a variety of characteristic phenomena take
place in the vicinity of the phase transition. Some of them can be used as
indicators of the phase transition, either directly (BCL cumulant) or after a
procedure such as finite size scaling (susceptibility, specific heat). We are
even able to distinguish between a first- and second-order phase transition
using quantities measured in the course of a simulation.

We have promised in the title to study quantum field theory; we are
now prepared to fulfill this promise. The next chapter is devoted to the φ4

model.
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Chapter 4

φ4 Theory

In the last two chapters we have gradually introduced the Monte Carlo
techniques that we now wish to apply to our primary research problem: the
φ4 quantum field theory. We begin with a discussion of the QFT motivation
of our study; however, it will quickly become clear that the questions we
are interested in can be rephrased as questions about a statistical mechanics
system similar to the Ising model of the previous chapter. As we will see in
due time, one of these questions concerns the critical coupling of the theory,
[λ/µ2]crit.

4.1 A Brief Tour of QFT

What is QFT? In the words of Zee (2003), “Quantum field theory arose out
of our need to describe the ephemeral nature of life.” In ordinary quantum
mechanics, we represent individual particles as normalized wavefunctions:
we set the probability of finding each particle somewhere to unity. But if our
particles are always certain to be somewhere, how can they be created or
destroyed? This is an important question, because particles are born and
die all the time; for instance, an atomic transition from an excited to a lower-
energy state will often involve the creation of a photon:

A∗ → A+ γ. (4.1)

If we try to make sense of this in ordinary quantum mechanics, we end up
treating the electromagnetic field classically. This approach does produce
some correct results, but is not very satisfactory, because it puts particles of
matter and particles of light on an unequal footing. As a result, it cannot be
extended to explain slightly more exotic but still ubiquitous events, such as
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muon decay or electron-positron annihilation. Quantum field theory gives
a quantitative account of such phenomena.

We will begin our short tour of QFT with a discussion of the Klein-
Gordon equation, a reasonable attempt at generalizing the Schrödinger
equation that goes terribly awry. To make sense of this, we introduce the
path integral formulation of quantum mechanics, which allows for a partic-
ularly smooth transition from the quantum mechanics of particles to that
of fields. Next, we show how the Klein-Gordon equation can be saved
by interpreting it as the equation of a quantum field, and introduce the φ4

model as its more interesting cousin. At the end of the section we part ways
with quantum field theory. Instead of pursuing the usual perturbation the-
ory approach which would lead us to Feynman diagram calculations, we
demonstrate that the φ4 theory is equivalent to a statistical mechanics sys-
tem which can be studied using the methods of the previous chapters.

All of the results we discuss in this section are well-established, and the
techniques used to derive them are not central to our work. Consequently,
our treatment of the topic will be rather informal. The reader interested in a
more thorough introduction may want to consult some of the QFT literature
discussed in Appendix C.3.

4.1.1 The Klein-Gordon Equation

One of the problems of ordinary statistical mechanics is that it’s nonrela-
tivistic. We can motivate the Schrödinger equation for a free particle by
starting from the classical relationship between (kinetic) energy and mo-
mentum,

E =
p2

2m
, (4.2)

and replacing E and p with the corresponding quantum mechanical differ-
ential operators,

E → ı
∂

∂t
, and p→ −ı~∇. (4.3)

We obtain

ı
∂

∂t
= − ~2

2m
∇, (4.4)

as promised. In special relativity, the analog of Equation 4.2 is given by

p2 =
E2

c2
− p · p = m2c2, (4.5)
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where by p2 we denote the magnitude of the momentum 4-vector, and by
p the vector of momenta (p = pxı̂ + py ̂ + pzk̂). If we use the substitu-
tions of Equation 4.3 to transform this relativistic relation into a differential
equation, we obtain (

1
c2

∂2

∂t2
−∇2

)
+
m2c2

~2
= 0. (4.6)

Denoting the solution of this equation by φ and setting ~ = c = 1,1(
∂2

∂t2
−∇2

)
φ+m2φ = 0. (4.7)

This is the Klein-Gordon equation. Unfortunately, we quickly run into diffi-
culties if we try to interpret it in direct analogy to the Schrödinger equation.
Once we solve the latter, the probability density function is given by

ρ = φ∗φ, (4.8)

while the probability current2 is,

j = − ı~
2m

(φ∗∇φ− φ∇φ∗). (4.9)

For the solutions of the Klein-Gordon equation to be properly relativistic,
we want ρ to be the time component of the 4-vector of which j is the space
component. But then,

ρ =
ı~
2m

(
φ∗
∂φ

∂t
− φ∂φ

∗

∂t

)
. (4.10)

This latter expression is no longer strictly nonnegative! Since the Klein-
Gordon equation is second order in the time derivatives, we are free to
specify φ and ∂φ/∂t so as to generate states with ρ < 0. But probability
densities can’t be negative; this indicates that something’s wrong, either
with the Klein-Gordon equation or with our interpretation of it. As we will
soon see, it’s our interpretation that’s at fault: the equation describes not
individual particles, but fields on which they live.3

We now turn to a brief review of the path integral formulation of quan-
tum mechanics. It will allow us to make sense of the Klein-Gordon equa-
tion and, more importantly, see the connection between QFT and statistical
mechanics.

1This convention, known as natural units, is ubiquitous in QFT. We will use it from now
on.

2See Griffiths (2005, Problem 1.14).
3This discussion of the Klein-Gordon equation was based on Ryder (1996, section 2.2).
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4.1.2 Path Integrals and Quantum Fields

Consider the standard double-slit experiment: a particle is emitted from a
source S at t = 0, passes through a screen with two holes (A1 andA2) and is
detected on the other side by a detector O at time t = T . The amplitude for
detection is equal to the sum of the amplitude for the particle to propagate
from S through A1 to O and the amplitude for the particle to propagate
S → A2 → O. In other words,

A(detection at O) = A(S → A1 → O) +A(S → A2 → O). (4.11)

As we drill more holes in the screen, the amplitude is still the sum over all
holes:

A(detection at O) =
∑
i

A(S → Ai → O). (4.12)

Of course, an analogous thing happens if we add another screenB between
A and O, with holes at Bi. The total amplitude is just a sum over the pos-
sible paths. But now, let’s continue this process by placing infinitely many
screens between S and O, and then drilling infinitely many holes in each
of them, so that the screens disappear. Extending the idea we’ve used thus
far, we arrive at the conclusion that

A(detection at O) =
∑
paths

A(S → O in time T following a particular path).

(4.13)
As the distances between the screens become infinitesimal, we replace the
sum with an integral, thus arriving at the path integral.

This is a neat idea, but how to use it to make calculations? The first thing
to note is that the amplitudeA(S → O in time T following a particular path)
is just a product of the amplitudes for traversing each subsequent segment
of the path. Secondly, recall that the amplitude for a particle to propagate
from point qI to point qF in time T is given by

〈qI | e−ıHT |qF 〉 , (4.14)

where H is the Hamiltonian and we use Dirac notation to represent the
states.4 Making further progress is not difficult, but the notation can get a

4Dirac notation is very convenient and commonly used among physicists. Unfortu-
nately, the otherwise excellent text of Griffiths (2005) usually used to teach intermediate
QM at Amherst mentions it only in passing. If the subsequent manipulations (particularly
those in Appendix A.3) look mysterious, we strongly recommend a glance at the first few
chapters of Townsend (2000).
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Figure 4.1: Two possible paths from an initial to a final point, with knots at
q0, q1, . . . , qN .

bit out of hand. To prevent the mathematical details (important and inter-
esting as they are) from distracting us at this point, we relegate the rest of
the argument to Appendix A.3, and here merely state the result as a lemma:

Lemma 3. The amplitude for a particle to transition from an initial state |qI〉 to a
final state |qF 〉 is given by

〈qI | e−ıHT |qF 〉 =
∫
Dq(t) eıS(q), (4.15)

where S(q) is the action (time integral of the Lagrangian):

S(q) =
∫ T

0
L(q, q̇) dt =

∫ T

0

1
2
mq̇2 − V (q) dt, (4.16)

and the symbol
∫
Dq(t) is shorthand for∫
Dq(t) ≡ lim

N→∞

(
−ı2πm
δt

)N/2 N−1∏
j=0

∫
dqj . (4.17)

The formidably looking expression for
∫
Dq(t) is nothing but a precise

statement of what we mean by “sum over all paths”: the qj ’s are the suc-
cessive knots through which our path passes (see Figure 4.1); we let their
number go to infinity, and integrate over their possible positions. Note the
structural similarity between Equation 4.15 and the partition function (e.g.
Equation 3.3). As we will show in the next section (4.1.3), this is more than
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just an accidental resemblance. Emphasizing the connection, the amplitude
for transitions from the ground state back to the ground state, which is of
particular interest, is traditionally denoted Z:

Z ≡ 〈0| e−ıHT |0〉 =
∫
Dq(t)eı

∫ T
0 L(q,q̇) dt. (4.18)

The preceding discussion was concerned with a single particle, but it is
readily generalized to the case of many particles: we simply replace the
single particle Lagrangian with its multiparticle equivalent, so that the ac-
tion becomes

S(q) =
∫ T

0
dt

[
−V (q1, q2, . . . , qN ) +

N∑
a

1
2
maq̇

2
a

]
. (4.19)

What if we want to describe a continuous field? We define its Lagrangian
as the integral of a Lagrangian density, L, over all space; the Lagrangian
density depends on the value φ of the field at the point at which it’s evalu-
ated:

S(φ) =
∫ T

0
dt

∫
L(φ) dn−1x, (4.20)

where n−1 is the number of space dimensions (generally 3, but sometimes
fewer). We will want to integrate over all time as well, and write

S(φ) =
∫
L(φ) dnx, (4.21)

where time is now denoted as x0, the first of the spacetime coordinates.
But how does all this formalism relate to particle interactions? Where

are the particles we purport to describe? They’re actually not here yet, be-
cause our Lagrangian describes the unperturbed vacuum. Particles would
consist of propagating excitations in the field, analogous to waves on a lake.
But to observe a wave on a lake, we must disturb its surface somehow—
similarly, to create and annihilate particles in a quantum field theory, we
need to introduce their sources and sinks. These are added by tacking on
a term J(x)φ to the Lagrangian density. All in all, we obtain the following
expression:

Z =
∫
Dφ eı

∫
L+Jφ dnx. (4.22)

Doing quantum field theory amounts to evaluating the integral above. For
each source-sink pair, we get a particle; consequently, if we expand Z in
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terms of J , each expansion coefficient will be the amplitude for a process
involving a number of particles equal to the corresponding power of J .

There are some restrictions on the form the Lagrangian density may
take, arising from the requirement of Lorentz invariance. The simplest
choice is

L(φ) =
1
2

(
∂φ

∂t

)2

− 1
2

(∇φ)2 − 1
2
m2φ2, (4.23)

known as the free-field theory. In fact, it’s the only allowed Lagrangian for
which the integral in Equation 4.22 can be evaluated exactly. Interestingly,
it turns out that the Euler-Lagrange equation derived from this Lagrangian
is (

∂2

∂t2
−∇2

)
φ+m2φ = 0. (4.24)

This is the Klein-Gordon equation of Section 4.1.1. The problems with the
Klein-Gordon equation that we encountered in that Section arose from our
incorrect interpretation. The equation does not describe a single particle,
but rather an entire field. On the other hand, our stumbling upon this
equation explains why this theory is known as the free field theory: we
originally obtained the Klein-Gordon equation from an energy-momentum
relation that included no potential energy term. The particles living on the
Klein-Gordon field do not interact with each other.

If we would like our particles to interact, we need to introduce addi-
tional terms into the Lagrangian. One choice is to set

L =
1
2

(
∂φ

∂t

)2

− 1
2

(∇φ)2 − 1
2
µ2φ2 − λ

4
φ4. (4.25)

This expression for the Lagrangian defines the φ4 quantum field theory.
Equation 4.22 cannot be evaluated exactly for this model. The usual ap-
proach to this problem is to expand Z in powers of both J (number of par-
ticles) and λ (the strength of the coupling) and use perturbative methods—
work only to low orders in λ, often as low as first order. The famous Feyn-
man diagrams are in essence just a mnemonic device for keeping track of
terms in this double expansion.

As we announced at the head of this chapter, our line of attack will be
different. In the next section, we will show that the theory can be recast as
a statistical mechanics problem. The rest of the chapter will be devoted to
tackling this statistical system using the Monte Carlo methods with which
we are by now familiar. Before we end our tour of QFT, however, we need
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to acknowledge and address one more issue: the regularization and renor-
malization of φ4 theory.

We have mentioned that Feynman diagrams are a way of keeping track
of the double expansion of Z in terms of λ and J , but we have not looked at
any of them. This is all for the better, because it saved us from a nasty shock:
the contributions to Z from some of the diagrams are infinite! These dia-
grams are known as divergent. We have phrased our discussion in terms
of a sum over paths in position space, but Feynman diagrams are usually
set up so as to involve momentum-space integrals. A divergent diagram is
one which corresponds to an integral that blows up as we try to extend the
integration all the way to infinite momentum. This is a symptom of the fact
that QFT, like all physical theories, has a limited range of applicability: it
breaks down in sufficiently extreme conditions. One time-honored way to
deal with this problem is to postulate a cutoff momentum, Λ: we integrate
over momenta up to Λ, and no higher. This method, and others like it, are
called regularization.

Postulating a momentum cutoff may seem like a misguided thing to
do: won’t our predicted amplitudes depend on the value of Λ? Yes, they
will, but they also depend on the parameters λ and µ: we let λ and µ be
functions of Λ, so that the dependencies of the predicted amplitude on
these parameters cancel out, and the amplitude does not depend on our
choice of Λ. What if an experimentalist were to measure µ or λ directly?
They would actually record values µR and λR, known as the renormalized
(or simply “physical”—Zee 2003, p. 148) parameters, which are functions
of the theoretical parameters λ, µ and Λ. If we used these parameters in
computing our Feynman diagrams in the first place, we wouldn’t observe
the divergences. The renormalized parameters, rather than the theoreti-
cal ones, are of physical interest. To contrast them with the renormalized
parameters, the theoretical ones (technically called “bare”) are usually sub-
scripted, thus: µ0, λ0.

As it turns out, λ is unaffected when we renormalize the φ4 theory, so
we may write λR = λ0 = λ. However, µ is affected. One way to renormal-
ize it, which is convenient for our purposes for reasons too complicated to
go into here, is given in Loinaz and Willey (1998). The authors show that
the renormalized parameter is defined implicitly as

µ2
R = µ2

0 + 3λ
∫ ∞

0
e−µ

2
Rt
[
e−2t I0(2t)

]2
dt, (4.26)

where I0(z) is the modified Bessel function of the first kind, equal to the
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sum of the series,

I0(z) =
∞∑
k=0

(z2/4)k

(k!)2
. (4.27)

Any results we obtain in our lattice simulations will pertain to the bare
parameter µ0, rather than the renormalized parameter µR. Since it’s µR
that’s of physical significance, however, we will eventually find ourselves
solving Equation 4.26 numerically to obtain it.

With these considerations in the back of our minds, we end our tour of
QFT. In the next section, we will show how the φ4 model can be studied
using the tools of statistical mechanics.

4.1.3 The φ4 as a Statistical System

Let’s recall the path integral for a three-dimensional5 φ4 theory:

Z =
∫
DφeıS d

4x, (4.28)

where

S =
∫

1
2

(
∂φ

∂t

)2

− 1
2

(∇φ)2 − 1
2
µ2

0φ
2 − λ

4
φ4 d4x. (4.29)

The expression for Z looks almost like a partition function for a system
with a continuum of states, except for the factor of ı and the appearance
of a Lagrangian instead of a Hamiltonian. The latter two differences are
geometric: they’re due to the fact that quantum field theories live in rel-
ativistic spacetime (Minkowski space), while statistical mechanics models
are defined in the more familiar Euclidean space. These two spaces differ
by their metric—the way distance is defined. In Euclidean space,

ds2 = dx2 + dy2 + dz2 + · · · . (4.30)

In contrast, in Minkowski space, the natural measure of distance is the
spacetime interval:6

ds2 = dt2 − dx2 − dy2 − dz2. (4.31)

5When we say three-dimensional, we mean three spatial dimensions. There’s an addi-
tional time dimension, which is why we have d4x, rather than d3x in the expression for
Z.

6We’re still using natural units, in which c = 1; otherwise, there would be a factor of c2

preceding the dt2.
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The embarrassingly direct solution to this problem, which turns out to be
the correct one, is to perform a substitution t → ıt in our Lagrangian. This
procedure, known by the name of Wick rotation in complex analysis, con-
verts from Minkowski to Euclidean space. Our differential expression be-
comes,

1
2

(
∂

∂t

)2

− 1
2

(∇)2 → −1
2

(
∂

∂t

)2

− 1
2

(∇)2 = −(∇4)2, (4.32)

where the symbol∇4 denotes the gradient in a four-dimensional Euclidean
space. At the same time, we also transform

d4x = dt d3x→ −ıd4xE . (4.33)

All in all, our Lagrangian density becomes

L = −(∇4φ)2 − 1
2
µ2

0φ
2 − λ

4
φ4 = −HE , (4.34)

whereHE is a Hamiltonian density:

HE = (∇4φ)2 +
1
2
µ2

0φ
2 +

λ

4
φ4. (4.35)

As a result, our path integral has been transformed into

ZE =
∫
Dφ exp

(
ı

∫
(−ıd4xE)(−HE)

)
=
∫
Dφ e−

∫
HE d4xE , (4.36)

the partition function of a four-dimensional statistical system with a con-
tinuum of states, known in statistical mechanics as the Landau-Ginzburg
model. The integral of the Hamiltonian density over all (four-dimensional)
space is just the energy of a particular field configuration, and the notation∫
Dφ means a sum over all possible configurations of the field. It turns out

that the Landau-Ginzburg model is an approximation to the Ising model of
the same number of dimensions, and can be shown to belong to the same
universality class (Binney et al., 1992, Chapter 7 and Appendix K). In the
next section, we will see how to model it on a lattice.

4.2 The φ4 on a Lattice

While the Landau-Ginzburg model is a statistical mechanics system, we’re
not quite in familiar territory yet. The Ising model we’ve studied in Chap-
ter 3 was different in two important respects: it was defined on a lattice,
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rather than a continuous space, and its spins could only take on two values
(1 and −1), while the Landau-Ginzburg “spin” φ can take on a continuum
of values. We will deal with the former problem below by discretizing the
space on which the model is defined. The latter issue, the continuity of
the spin variable, can be resolved by slightly modifying our algorithms; we
will tackle it in Section 4.2.2.7

4.2.1 Discretization

To discretize the continuum theory specified by Equations 4.35 and 4.36,
we must do three things: replace the continuous field with one defined on
a lattice, deal with the derivatives and get rid of the integral over all space.
The first task is easy. Instead of defining the field at every point in space, we
define it only at discrete lattice sites. The derivatives are a bit more tricky.
The simplest way to deal with them is to define them in terms of nearest
neighbors on the lattice,

∂φ

∂x
→

φ(x+ a
2 )− φ(x− a

2 )
a

, (4.37)

where a is the lattice spacing. The discretization of the integral over the
Hamiltonian density is similarly straightforward: it is converted into a sum
over lattice sites. Since our discretization is identical to that of Loinaz and
Willey (1998) and Schaich (2006), we will not strain the reader’s patience
with more algebra, and merely assert the result. The partition function of
the system is the usual sum over all possible states,

Z =
∑
µ

e−βEµ ,

where

βE =
1
2

∑
〈i, j〉

(φi − φj)2 +
∑
i

(
1
2
µ2

0φ
2
i +

λ

4
φ4
i

)
. (4.38)

The first sum is over all pairs of neighboring lattice sites, while the sec-
ond is over all lattice sites. We are assuming a rectangular lattice, so i =
1, 2, . . . , L2.

7This section is based on Schaich (2006, sections 7.2–3).
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4.2.2 Algorithms for the φ4

How can we simulate the φ4 theory on a lattice? We call the reader’s at-
tention to the similarity between Equation 4.38 and Equation 3.1, repeated
here for convenience:

E = −J
∑
〈i j〉

sisj −B
∑
i

si.

In both cases, we have a nearest-neighbor interaction term and terms pro-
portional to the magnitudes of the spins. We will exploit this similarity and
use modifications of the algorithms of Chapter 3.

Metropolis In its general outline, our Metropolis algorithm for the φ4

model is much like the Ising variant:

1. Choose a spin on the lattice with uniform probability.

2. Assign a new value to the spin chosen.

3. Accept the new assignment with probability

ρ =

{
exp(βEnew − βEold) for βEnew > βEold,
1 for βEnew ≤ βEold.

(4.39)

The major difference is that φ, unlike the spins of the Ising model, can take
on a continuum of values. Therefore, if our algorithm is to be ergodic, we
can’t just flip them (φ → −φ). Instead, in point 2 we add to the spin a
value drawn from some distribution: φ → φ + X , X ∼ pX(x). There are
few restrictions on our choice of pX(x), since the detailed balance condition
can always be satisfied by an appropriate choice of ρ. We picked a uniform
probability distribution on a symmetric interval,

pX(x) =

{
1
2a for x ∈ [−a, a],
0 otherwise.

(4.40)

Our main motivation was that uniform deviates are generated faster than
values drawn from other distributions. We obeyed the “time honored rule
of thumb” (Krauth, 2006, p. 7) and chose the width of the interval, 2a, with
a view towards achieving an acceptance rate around 0.5; after a number of
trial simulations, we settled on a = 2.5.
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Wolff Our implementation of the Wolff algorithm is the naı̈ve but stan-
dard one (Brower and Tamayo, 1989; Charng, 2001; Schaich, 2006). The
outline is again similar to the Ising implementation:

1. Choose a cluster seed spin on the lattice.

2. Add neighboring spins to the cluster with probability ρ.

3. Invert the cluster: φ→ −φ.

As in the case of the Ising model, we will add spins to the cluster only if
they are properly aligned, i.e. have the same sign. The derivation of a value
of ρ that guarantees detailed balance has been relegated to Appendix A.4,
and here we only quote the result:

Lemma 4. The Wolff algorithm for the φ4 theory with the energy given by Equa-
tion 4.38 satisfies the detailed balance condition if the probability of adding a spin
to the cluster, ρ, is given by

ρ = 1− e−2φ(o)φ(c), (4.41)

where φ(c) is a cluster spin and φ(o) is its neighbor being considered for addition
to the cluster.

It is immediately obvious from the outline of our Wolff algorithm that
it cannot be ergodic, for it doesn’t change the lengths of the spins. There-
fore, in our simulations, we have to intersperse Wolff flips with Metropolis
sweeps to ensure ergodicity. Choosing the ratio of Metropolis to Wolff steps
is an important but difficult problem. It is important because the equili-
bration and autocorrelation times, as well as the degree of critical slowing
down, most likely depend on the Metropolis-Wolff ratio. It is difficult, how-
ever, because the nature of this dependence will likely change as one varies
µ2

0 and λ. To the best of our knowledge, no systematic study of the effect
of the Metropolis-Wolff ratio has been carried out. Different values have
been favored in the literature, from 1 : 1 (Brower and Tamayo, 1989; Loinaz
and Willey, 1998; Charng, 2001) to 5 : 1 (Schaich, 2006). In our runs, we
performed four Metropolis sweeps (steps per site) for each Wolff flip.

Our implementation of the mixed Metropolis-Wolff algorithm can be
found in Appendix B.2.7.
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4.3 Phase Transition Indicators

In the previous chapter, we have mentioned two approaches to finding
the critical point of a model: finding the intersection of the BCL cumulant
curves and performing a finite size scaling procedure on the susceptibility,
specific heat or other quantity that obeys a scaling law in the vicinity of
the critical point. In this section, we will describe our attempts at applying
these techniques to the Landau-Ginzburg model. We focus exclusively on
the two dimensional model from now on.

Our goal in the search for the phase transition of the Landau-Ginzburg
model is the corroboration of the surprising results of Schaich (2006), who
argued that the critical coupling [λ/µ2]crit depends on λ in a nonlinear fash-
ion.

Our efforts throughout the section will be facilitated by the fact that
the two-dimensional Landau-Ginzburg model is in the same universality
class as the two-dimensional Ising model. This implies that their critical
exponents are the same; in particular, ν = 1, γ = 7/4 (e.g., Newman and
Barkema, 1999, p. 235) and β = 1/8 (Pathria, 1996, p. 387).

4.3.1 The BCL Cumulant

Deterred by the technical difficulties inherent in finite size scaling, we ini-
tially hoped to base our estimates on the intersection point of the BCL cu-
mulant curves. We define it in analogy to Equation 3.33:

UL = 1− 〈φ4〉
3〈φ2〉2

. (4.42)

The most obvious way to proceed is to obtain BCL cumulant data for a va-
riety of lattices and find the point at which the curves are closest together.
For two curves, say f and g, this is equivalent to minimizing the loss func-
tion

LF = |f(x)− g(x)|. (4.43)

For three curves (f , g, h), the appropriate formula would be

LF = |f(x)− g(x)|+ |f(x)− h(x)|+ |h(x)− g(x)|. (4.44)
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Figure 4.2: BCL cumulant curves for the φ4
2 theory, λ = 0.5, with L =

16, 32, 64, 128, 256, 512. The sharper curves correspond to larger lattice sizes.

In general, the analogous loss function for n curves will have n!/2(n − 2)!
elements:8

LF =
n∑

j>i+1

n∑
i=1

|fi(x)− fj(x)|. (4.45)

Minimizing this function numerically is an easily programmed task, espe-
cially given that our functions are only defined at a relatively small number
of points. We proceeded to generate some data, and observed the disturb-
ing phenomenon depicted in Figure 4.2: the curves fail to intersect at a
unique point! The effect is clearly not due to random fluctuations: as a
result of extensive averaging, there is very little scatter in the points, partic-
ularly in the vicinity of the intersection point. While the curves do seem to
intersect closer and closer to one another as the lattice size increases, there
is a systematic leftward drift in the position of the intersection point. We
investigated other regions of the parameter space (λ = 1.0, 0.1) with similar
resolution and observed the same effect.

A similar phenomenon was predicted by Binder and Heermann (2002,
p. 46), though the authors believed it to consist of “scatter,” discernible only

8Because a list of n distinct objects has n!/(n− r)! permutations of length r, and we treat
permutations containing the same objects as identical.
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when working with “very small linear dimension.” What we observe could
be “Binder scatter,” though there is a more disturbing possibility: the finite
size scaling arguments used to argue for the existence of a unique intersec-
tion point may not hold as well in our case. When we discussed finite size
scaling in Section 3.5, we always considered varying the temperature; in
our study of the φ4 model, we are varying one of the parameters. In gen-
eral, the two procedures are not equivalent, though the similarity between
figures such as 4.2 and 3.8 (page 44) suggests the difference may not matter
much. We will return to this issue in the next section, as we discuss a more
direct application of finite size scaling to our system.

The presence of the systematic effect discussed above highlighted the
need to develop a more robust estimation approach than finding the data
point at which the distance between the cumulant curves is minimized.
There is an evident trend in the UL curves: they become sharper and their
inflection point shifts leftwards as the lattice size is increased. We searched
for a technique that would allow us to quantitatively estimate the L → ∞
limit of a sequence of such transformations, but to no avail. There appears
to be no established statistical method for estimating such a limit with-
out the knowledge of the functional form of the BCL curves. Therefore,
we fiddled with the λ = 0.5 data a bit, in the hope of finding some sim-
ple empirical regularity. The general shape of the UL curves is sigmoidal;
consequently, a very good fit can be obtained using a hyperbolic tangent
function, of the form

UL = a tanh
(
b(µ2

0 − c)
)

+ d, (4.46)

where a, b, c and d are parameters. A sample fitted curve is depicted in
Figure 4.3, and the fit parameters are in Table 4.1.

Encouragingly, the parameter b is linear in L. A positive correlation be-
tween b and L was expected, given that the limit b → ∞ of a sequence of
hyperbolic tangent curves is a step function; the BCL curves appear to be-
have similarly. The important parameter, however, is c, which determines
the location of the inflection point: as the lattice size increases, we expect
c to approach the position of the critical point. Inspired by the finite size
scaling relationship for the magnetic susceptibility, we attempted regress-
ing c on L−1/ν . Unfortunately, the results are not as clear-cut as one might
have hoped: there is a systematic variation in c that isn’t accounted for by
the fit (see Figure 4.4). There may be a relationship between this variation
and the lack of a unique intersection point of the BCL curves, for in both
cases using larger lattices always results in a more negative estimate of the
critical point, with the effect gradually fading as the lattice size increases.
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Figure 4.3: BCL cumulant curve for the φ4
2 theory, λ = 0.5, with L = 512. The solid

red line is a fit to Equation 4.46.

Table 4.1: The best-fit parameters obtained when BCL cumulant data for λ = 0.5
was fitted to Equation 4.46. The uncertainty estimates are 1σ bands, under the
assumption of normally distributed errors.

L a b c d

16 0.252(2) 10.5(1) 0.6432(8) 0.410(2)
32 0.2662(8) 19.4(1) 0.6717(2) 0.3811(6)
64 0.3118(7) 24.6(2) 0.6928(1) 0.3585(5)
128 0.3233(8) 64.2(8) 0.7061(1) 0.3464(7)
256 0.3285(9) 123(2) 0.71340(9) 0.3401(9)
512 0.330(1) 246(9) 0.71729(9) 0.338(1)
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Figure 4.4: The parameter c from Table 4.1 regressed on L−1. Note that we plot−c,
rather than c, since the critical point corresponds to limL→∞−c.

The apparent systematic effect in the results and the need to fit elaborate
functional forms made us reluctant to use the BCL cumulant as a phase
transition indicator. Consequently, we employed only the susceptibility in
our analysis.

4.3.2 Susceptibility

We can define the “magnetic” susceptibility per spin of the φ4 model anal-
ogously to that of the Ising:

χ =
1
L2

(
〈φ2〉 − 〈φ〉2

)
. (4.47)

We expect it to diverge at the critical point, obeying the same scaling rela-
tion as the Ising susceptibility (Equation 3.38):

χ ∝ |t|−γ .

There is an obvious difficulty here, one we brushed aside when discussing
the BCL cumulant but must now confront head-on: temperature is not a
well-defined property of our model. In our “energy” expression, Equa-
tion 4.38, there is already a β on the left hand side! We respond to this
challenge in the standard way (Loinaz and Willey, 1998; Schaich, 2006): we
fix λ and vary µ2

0 as if it were the temperature. Justifying this procedure
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rigorously is difficult, but at the very least, it seems like a reasonable thing
to try. We will let the results speak for themselves; their testimony is more
favorable than one might initially expect.

As we have remarked in Section 3.5, there are two ways to extract es-
timates of the critical point from susceptibility data using finite size scal-
ing: collapsing the susceptibility scaling function curves for different lattice
sizes or collapsing only their maxima. Using the entire curves is preferable,
but requires that we know the value of the susceptibility at every point in
an interval about the critical point; our data, of course, consists of samples
at discrete points. To obtain the missing parts of the curve, we need to
engage in interpolation. The state-of-the-art technique for doing so with
Monte Carlo data is the multiple histogram method, which exploits fea-
tures of the Boltzmann distribution to produce an excellent interpolation,
even from a small number of data points. Unfortunately, the method is
computationally intensive, difficult to implement, and would require us to
store all of the data generated in the course of our simulations (rather than
just the run averages).

As an alternative, we considered using optimally smoothed splines,
which are reputed to produce very good interpolations (Hastie et al. 2001,
section 5.4, Fujioka and Kano 2006). Unfortunately, existing implementa-
tions of this technique in languages such as R could not be used in a mini-
mization procedure designed to find the best estimate of the critical point.
We considered writing our own implementation, but failed to find suffi-
ciently specific references.

Faced with these problems, we abandoned the idea of using entire scal-
ing functions and instead used only their maxima. Consider Equation 3.44,
repeated here for convenience:

χ̃(L1/νt) = χLL
−γ/ν .

Recall that χ̃(·) is the susceptibility scaling function and χL is the magnetic
susceptibility per spin. It follows from this equation that for a given L the
maximum of the scaling function must coincide with the maximum of the
susceptibility. If we find the maxima of the susceptibility for different lattice
sizes, we can use an analog of Equation 3.46 to find the critical point using
a simple regression:

µm = µc(1 + xmL
−1/ν), (4.48)

where µm is the value of µ2
0 at which the susceptibility is maximized, µc

is the position of the critical point, xm is the position of the maximum of
the susceptibility scaling function (independent of L or µ2

0) and ν = 1 is
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Figure 4.5: Estimating the susceptibility maxima using a polynomial fit. The ro-
bustness of the method is tested by fitting the polynomial to four different regions.
The first fit was over the entire range shown; the other three ranges are indicated
by pairs of vertical lines. See Table 4.2 for the results.

the critical exponent. To find the maximum of the susceptibility, we resort
to the simple technique of polynomial fitting: we fit a general fourth-order
polynomial,

f(x) = a+ bx2 + cx3 + dx4, (4.49)

to a section of the susceptibility curve between the inflection points, and
use the polynomial’s maximum as an estimate of the susceptibility maxi-
mum. The polynomial is an approximation to the Taylor expansion of the
function, so the technique works well as long as the section of the curve
we’re considering is small enough.9 The uncertainty in the estimate of the
maximum is evaluated using the bootstrap method with 250 resamples,
which ought to give an estimate of the error accurate to about 5% (Efron,
1979)—perfectly satisfactory, since we will follow the standard practice and
quote only the uncertainty on the last digit.

One could object to the polynomial fitting technique described in the
last paragraph by pointing out that the result obtained depends on the
range of µ2

0 about the maximum to which we fit the polynomial. This is
a legitimate concern, although sensitivity to the choice of range will show
up in the uncertainty estimate: if the result depends on which points were
included in the sample, the bootstrap estimates obtained from different re-

9In the rare case when the number of data points in the vicinity of the maximum was
insufficient (fewer than twenty), we observed Runge’s phenomenon: the polynomial exhib-
ited spurious curvature. In those cases, we fit a third-order polynomial instead.
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Table 4.2: Estimates of the critical point obtained from data in Figure 4.5 by con-
sidering different ranges of points. Note that the estimate of the critical point is
insensitive to the size of the interval considered.

µ2
0 Lower Bound µ2

0 Upper Bound Critical point
−0.0459333 −0.0413500 −0.0438(2)
−0.0455167 −0.0421833 −0.0439(2)
−0.0451000 −0.0426000 −0.0439(2)
−0.0446833 −0.0430167 −0.0439(6)

samples will be widely disparate, and the reported error of the result will
be large.10 We also performed a small experiment verifying the robustness
of the method: we fit fourth-order polynomials to different sections of the
susceptibility curve for λ = 0.02, L = 192. The curve itself and the regions
of it used in our fits are shown in Figure 4.5; the estimates of the critical
point from the fits are reported in Table 4.2. The estimates are in very good
agreement. The increase in uncertainty for the smallest range shouldn’t
cause alarm: a glance at Figure 4.5 reveals that the amplitude of the noise
is almost as large as the curvature, so a bigger uncertainty is expected.

Having obtained the susceptibility maxima, we use a weighted linear
regression to determine µc from Equation 4.48. As in Section 2.2.2, we use
the estimated sample variance (the uncertainty estimates from the boot-
strap) to determine the weights. The estimate of the intercept from the
regression is our best estimate of the critical point in the thermodynamic
limit. The natural estimate of the uncertainty in this value is the regres-
sion standard error, but that’s not the estimate we use. The standard er-
ror will give the correct estimates only if the underlying model is indeed
linear—in other words, if Equation 4.48 is valid and ν = 1. Otherwise,
the standard error will be an underestimate of the uncertainty. To guard
against this possibility, we used the jackknife method to measure the un-
certainties. The jackknife is similar to the bootstrap, but instead of a large
number of random resamples, uses “leave-one-out” resamples by remov-
ing one data point. Its only advantage over the bootstrap is computational:
we need only produce as many resamples as there are points in the data set,
rather than upwards of 250. Otherwise the two techniques are essentially
the same. For a brief introduction through examples, the reader is referred
to Efron (1979).

10The bootstrap method was discussed in some detail in Section 3.2.3, page 38.
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Because we are concerned about the validity of Equation 4.48, we per-
form an additional set of regressions based on it, in which not only the
intercept but also the critical exponent ν are estimated. This is carried out
by regressing the position of the susceptibility maximum on L−1/ν instead
of L−1, as in the previous fit. We continue to use the jackknife technique to
estimate the errors. Since the true value of this exponent is known to be 1,
deviations from that value would be a sign that Equation 4.48 is false. We
will refer to this regression as Regression 2, to distinguish it from the linear
regression of the previous paragraph.

4.4 The Simulation

We used a mixture of the Metropolis and Wolff algorithms described in
Section 4.2.2 to obtain BCL cumulant and susceptibility measurements for
a variety of λ values. In this section, we describe the data we’ve collected
and the results of its analysis.

Since we are interested in making a statement about the critical cou-
pling, which is related the limit of the transition line as λ → 0, we per-
formed simulations at λ = 0.02, 0.03, 0.04, 0.05, 0.1, 0.5, 0.7, 1.0. We ini-
tially intended to perform each of these on lattices of seven sizes, L =
64, 128, 192, 256, 384, 512 and 600. However, a bug in a program corrupted
some of our results, so that results for all seven lattices were available only
for λ = 0.02, 0.03, 0.04, 0.1, 1.0. For the remaining values of λ, results were
available for four lattices, L = 64, 128, 256 and 512. The µ2

0 ranges of the
simulations were chosen with a view towards sampling the susceptibility
peaks.

We performed an analysis of the susceptibility data as described in the
previous section. The results of both regressions are shown in Table 4.3.
The estimated positions of the critical points are in agreement for λ ≥ 0.04;
the higher uncertainties in Regression 2 reveal a tendency to overfit the
data, not surprising given that three parameters (rather than two, as in Re-
gression 1) are determined from a rather small data set. Below λ = 0.04,
however, the two critical point estimates diverge. This is coupled with a
decrease in the estimate of 1/ν, which thus far was within uncertainty of
unity. To see what’s going on, we plot Regression 1 for λ = 0.02 (see Fig-
ure 4.6). The data points all fall within uncertainty of the regression line,
but they don’t seem to lie on a straight line. Instead, they arrange them-
selves on a concave curve, roughly resembling the plot of f(x) =

√
x. This

is reflected in the estimate of 1/ν from Regression 2: a better fit is achieved
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Table 4.3: Best estimates of the critical points in φ4 theory from the susceptibility
curves. In Regression 1, it was assumed that ν = 1, while in Regression 2, ν was a
free parameter. In both, the susceptibility maximum was regressed on L−1/ν .

λ
Regression 1 Regression 2

µ2
0 µ2

0 1/ν

1.0 −1.2725(1) −1.2728(4) 0.96(7)
0.7 −0.9515(2) −0.9511(3) 1.04(6)
0.5 −0.7211(2) −0.7209(9) 1.0(2)
0.1 −0.18432(3) −0.1845(2) 0.86(9)
0.05 −0.10070(3) −0.1008(2) 0.86(15)
0.04 −0.0826(1) −0.083(5) 0.7(6)
0.03 −0.064096(4) −0.06453(1) 0.63(8)
0.02 −0.04465(8) −0.04510(2) 0.6(2)

0.005 0.010 0.015
1�L

-0.0440

-0.0435

-0.0430

-0.0425

Susceptibility Maximum

Figure 4.6: Regression 1 for λ = 0.02. Notice that the data does not fall on a straight
line, but rather on a concave curve.
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if 1/L is raised to a fractional power. A comparison with Figure 4.4 suggests
that we’re observing the same phenomenon we ran into when looking at
the BCL cumulant data: the critical point “drifts” towards more negative µ2

0

values as the lattice size increases.
One apparent difference is that Figure 4.4 presents data for λ = 0.5,

while Figure 4.6 presents data λ = 0.02. The susceptibility fits for λ =
0.5, 0.7, 1.0 reveal no “drift,” as the estimates of 1/ν from Regression 2 in-
dicate (they’re all consistent with ν = 1). This difference, however, does
not imply that the effect is more pronounced for the BCL cumulant than
for the susceptibility. It can be explained by noting that Figure 4.4 includes
data for small lattices, L = 16 and L = 32, which were not used in sus-
ceptibility simulations due to concerns about corrections to scaling; as can
be seen in Figure 4.6, smaller lattices contribute more to the curvature than
large ones, so their exclusion from the susceptibility fits is responsible for
the impression that the “drift” is less pronounced there.

We are forced to conclude that the “drift” of the critical point is proba-
bly an actual feature of the system, rather than an artifact of the indicators
as was initially hoped. At worst, this may mean that our extension of finite
size scaling from variations in temperature to variations in µ2

0 was illegiti-
mate; in that case, the ν that appears in our regression is not the universal
correlation length exponent of the Ising universality class, but just a param-
eter that may depend on L. It’s possible, however, that finite size scaling
is applicable, and the deviations from linear behavior are just particularly
noticeable corrections to scaling. This optimistic interpretation is consistent
with the observation that the effect is particularly pronounced for small lat-
tices.

Regardless of the correct interpretation of the deviations from finite size
scaling, it is worthwhile to calculate an estimate of the critical coupling
[λ/µ]crit. The reader may recall from Section 4.1.2 that the critical values
of µ2

0 we obtained are the “bare,” unphysical parameters. We use Equa-
tion 4.26

µ2
R = µ2

0 + 3λ
∫ ∞

0
e−µ

2
Rt
[
e−2t I0(2t)

]2
dt,

to obtain their renormalized counterparts, listed in Table 4.4. The uncer-
tainties are obtained by solving the preceding equation for the upper and
lower bound on each parameter. From these estimates, we can calculate the
coupling constant f ,

f =
λ

µ2
R

. (4.50)
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Table 4.4: Best estimates of the critical points in φ4 theory from the susceptibility
curves—renormalized values.

λ µ2
R (Regression 1) µ2

R (Regression 2)

1.0 10.275(3) 10.28(1)
0.7 10.224(8) 10.21(1)
0.5 10.23(1) 10.21(5)
0.1 10.55(2) 10.65(28)
0.05 10.27(25) 10.90(64)
0.04 10.63(8) 11(4)
0.03 10.71(4) 11.19(11)
0.02 10.68(13) 11.43(3)

We plot f as a function of λ in Figure 4.4 using data from both regressions
and contrast our results with those of Schaich (2006). As expected, the re-
sults from Regression 1 are more akin to Schaich’s, since he also performed
a linear fit. They also benefit from lower uncertainties, which can be traced
back to the lack of overfitting. However, Regression 2 shows a more robust
trend; this is somewhat surprising, because if fitting ν were spurious, we’d
expect the larger uncertainties to be accompanied by a larger scatter in the
observation points. It’s possible that treating ν as a fit parameter accounts
for the “drift” better than a linear fit. Of course, it may also be that such a
regression systematically biases µ2

R downwards, and the robustness of the
trend is a reflection of the robustness of the bias. Resolving this issue is rel-
egated to future work. The important point is that the results of Regression
2 are not in conflict with Schaich’s original finding that the λ−µ regression
line deviates from the straight line once postulated by Loinaz and Willey
(1998); on the contrary, they serve to show that a linear model derived from
finite size scaling may underestimate this deviation.

Since data from Regression 1 is so similar to that obtained by Schaich, it
is well fitted by his models,

f(λ) = a+ bλ+ cλ log(λ) (4.51)

f(λ) = a+ bλ+ cλ log(λ) + dλ2 log(λ). (4.52)

The best estimates of the critical coupling (i.e. the coupling in the limit
λ → 0) from these models is 10.69(1) and 10.7(2), respectively. These val-
ues are somewhat below his (10.774(31) and 10.874(17)) due to the out-
lier at λ = 0.05; if the outlier is dropped, the estimates become 10.78(2)
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Figure 4.7: Plots of f as a function of λ, using data from Regressions 1 (a) and 2 (b).
In both cases, our results (red squares) are compared with Schaich’s (blue disks).
The three data sets are indistinguishable for λ ≥ 0.5, but differ for λ ≤ 0.1.
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Figure 4.8: Data from Regression 2 fitted to Equation 4.52.

and 10.76(4), which are in the same range. Data from Regression 2, is not
fitted particularly well by these logarithmic expressions: Equation 4.51 is
not steep enough, and Equation 4.52 results in spurious curvature (see Fig-
ure 4.8). The best estimate of the critical coupling from this fit is 11.7(1),
significantly higher than the estimate from Regression 1.
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Chapter 5

Conclusion

In this work, we have studied a broad selection of classical problems which
can be treated using Monte Carlo methods, from random walks, through
the Ising model to the φ4 quantum field theory. We corroborated the sur-
prising discovery of Schaich (2006) concerning the critical coupling of the
φ4 model. We also used a more flexible regression model to argue that the
critical coupling may be even higher than Schaich was able to show. This is
so because the finite size scaling assumptions motivating his linear model
are violated for the lattice sizes under consideration, especially near the
λ→ 0 point that is of interest.

On our way to consider the φ4 model, we devoted more attention than is
usual to the subject of random walks, and independently derived a pleas-
ing minor result: the exact expression for the end-to-end distance of the
non-reversing random walk.

We particularly regret not having been able to pursue two avenues of
further research. Firstly, we considered (but never implemented) an alter-
native method for determining the position of a critical point in φ4 theory:
real-space renormalization, a technique based on the Monte Carlo renor-
malization group (see Newman and Barkema, 1999, Section 8.4). It would
be interesting to compare the estimates obtained from a renormalization
algorithm with the susceptibility and BCL cumulant estimates. The simi-
lar behavior of the susceptibility and the BCL cumulant is in retrospect not
very surprising, as both indicators depend on finite size scaling. Since real-
space renormalization does not, it may provide an independent perspective
on the phase transition line of the φ4 theory.

Another project we were unable to pursue was the verification of Schaich’s
results for the three dimensional φ4 theory. Schaich followed exactly the
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same procedure in his analysis of the statistical mechanical problem, which
we believe may have been a mistake. The three dimensional φ4 theory is in
the same universality class as the four dimensional Ising model, implying
that ν = 1/2 (Binney et al., 1992, p. 176), rather than ν = 1. It may have
been more appropriate, therefore, to regress the estimates of the critical
points from finite lattices on L−2, rather than L−1.
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Appendix A

Proofs

This chapter contains the proofs of lemmas postulated in the text.

A.1 Proof of Lemma 1

Lemma 1 states that for a non-reversing random walk on a rectangular, d
dimensional lattice,

〈sN−i · sN 〉 =
(

1
2d− 1

)i
∀i ∈ N < N, (A.1)

where si is a vector representing the ith step of the walk. We will proceed
by induction.

The base case is 〈sN−1 · sN 〉. Given a step sN−1 on a d dimensional
rectangular lattice, the step sN can be taken in one of 2d−1 directions (“up”
or “down” each of the dimensions, but with the restriction sN 6= −sN−1).
Of these possible steps, 2d− 2 will be orthogonal to sN−1, and one will be
parallel to it (sN = sN−1). The orthogonal 2d steps result in sN−1 ·sN = 0,
while the unique parallel step yields sN−1 · sN = 1. Therefore,

〈sN−1 · sN 〉 =
1

2d− 1
. (A.2)

The induction assumption is that there exists a j ∈ N such that

〈sN−j · sN 〉 =
(

1
2d− 1

)j
. (A.3)
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We will show that from this assumption it follows that

〈sN−(j+1) · sN 〉 =
(

1
2d− 1

)j+1

. (A.4)

In the following discussion, ω denotes a non-reversing random walk, and
ωk its kth step. Consider the following three sets of non-reversing random
walks. The set Ai is the set of all NRRWs of i steps terminating with step sN

(i.e., ωi = sN ); it has ai elements. The set Bi contains all NRRWs of i steps
terminating with step sN , such that their first step is parallel to sN :

Bi = {ω ∈ Ai | ω1 · ωi = 1}. (A.5)

The set Bi numbers bi elements. Finally, the set Ci contains all NRRWs of
i steps terminating with step sN , such that their first step is antiparallel to
sN :

Ci = {ω ∈ Ai | ω1 · ωi = −1}. (A.6)

This set has ci elements.
The sets Ai, Bi, Ci are related to the sets Ai+1, Bi+1, Ci+1 in the follow-

ing way:

• All of the elements of Ai+1 can be generated from the elements of
Ai by adding a step to the beginning of each. On a d-dimensional
rectangular lattice, there are 2d possible steps to be added, but one of
these will violate the non-reversibility requirement and is forbidden.
So, ai+1 = (2d− 1)ai.

• We can generate one element of Bi+1 from each element of Ai, with
the exception of those elements of Ai which also belong to Ci. This is
because a vector parallel to sN can be added to the beginning of each
walk in Ai except for those for which ω1 · sN = −1 (since we would
violate the requirement of non-reversibility). Therefore, bi+1 = ai−ci.

• Similarly, we can generate an element ofCi+1 from each element ofAi
with the exception of those elements which also belong to Bi. Hence,
ci+1 = ai − bi.

Now, the expectation value of 〈sN−j · sN 〉 is just the weighted sum of all
the possible values, with the weights being the probabilities of observing
particular values:

〈sN−j · sN 〉 = (1) · bj
aj

+ (−1) · cj
aj

+ (0) · aj − bj − cj
aj

=
bj − cj
aj

. (A.7)
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Similarly,

〈sN−(j+1) · sN 〉 =
b(j+1) − c(j+1)

a(j+1)
=

(aj − cj)− (aj − bj)
(2d− 1)aj

(A.8)

=
1

2d− 1
bj − cj
aj

=
1

2d− 1
〈sN−j · sN 〉. (A.9)

Hence, by induction on N,

〈sN−i · sN 〉 =
(

1
2d− 1

)i
. (A.10)

A.2 Proof of Lemma 2

Lemma 2 states that the Wolff algorithm for the Ising model satisfies the
detailed balance condition if the probability of adding a spin to the cluster,
ρ, is given by

ρ = 1− e−2βJ .

The argument offered below, not very rigorous but hopefully compelling,
is based on that of Newman and Barkema (1999, Section 4.2).

The detailed balance condition is given by Equation 3.10, repeated here
for convenience:

P (µ→ ν)
P (ν → µ)

=
pν
pµ

= e−β(Eν−Eµ).

Like in the case of the Metropolis algorithm, we break the transition prob-
ability into the selection and acceptance ratios, obtaining

g(µ→ ν)A(µ→ ν)
g(ν → µ)A(ν → µ)

= e−β(Eν−Eµ). (A.11)

Let’s consider two states µ and ν which differ only by the flip of one cluster.
We will assume that the probability ρ of adding a spin to the cluster

takes the same values for all spins aligned with the seed (and zero for all
antialigned spins). Then, the probability of adding all the spins making up
the cluster to a seed is the same for the cluster that transforms µ → ν and
the one that transforms ν → µ. The difference lies in the spins which are not
added, even though they are aligned with the seed. If the cluster formed
in state µ has m “bonds” between cluster spins and aligned neighboring
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spins, the probability of the cluster forming is proportional to (1 − ρ)m. In
contrast, the cluster formed in state ν will have n “bonds” between eligi-
ble neighboring spins and cluster spins (with m 6= n, generally), and the
probability of it forming and being flipped will be proportional to (1− ρ)n.
So,

g(µ→ ν)
g(ν → µ)

= (1− ρ)m−n, (A.12)

and we require

A(µ→ ν)
A(ν → µ)

= (1− ρ)n−m e−β(Eν−Eµ). (A.13)

Conveniently, the energy change depends on m and n as well. Every bond
between an aligned neighbor and a cluster spin (of which there are m) cor-
responds to a bond broken in the transition µ→ ν, and to a consequent en-
ergy increase of ∆E = +2J . At the same time, every antialigned neighbor-
cluster spin pair (of which there are n) corresponds to a fall in the energy
of ∆E = −2J . Therefore,

Eν − Eµ = 2J(m− n) (A.14)

and
A(µ→ ν)
A(ν → µ)

=
[
e2βJ (1− ρ)

]n−m
. (A.15)

At this point, we notice the “delightful fact” (Newman and Barkema, 1999,
p. 95) that choosing

ρ = 1− e−2βJ (A.16)

results in the right hand side of Equation A.15 equaling one. This means
that we can construct the cluster by adding aligned neighboring spins with
this probability, and once we have attempted to add every such spin, we
are allowed to flip the cluster without any further worry.

A.3 Proof of Lemma 3

Lemma 3 states that the amplitude for a particle to transition from an initial
state |qI〉 to a final state |qF 〉 is given by

〈qI | e−ıHT |qF 〉 =
∫
Dq(t) eıS(q), (A.17)
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where S(q) is the action (time integral of the Lagrangian):

S(q) =
∫ T

0
L(q, q̇) dt =

∫ T

0

1
2
mq̇2 − V (q) dt, (A.18)

and the symbol
∫
Dq(t) stands for∫
Dq(t) ≡ lim

N→∞

(
−ı2πm
δt

)N/2 N−1∏
j=0

∫
dqj . (A.19)

We begin with the expression for the amplitude familiar from the standard
formulation of quantum mechanics, 〈qI | e−ıHT |qF 〉. We can break up the
time T into a large number N of segments of length δt = T/N , and write

〈qI | e−ıHT |qF 〉 = 〈qI | e−ıHδte−ıHδt · · · e−ıHδt |qF 〉 . (A.20)

Since |q〉 forms a complete set of states, we have
∫
dq |q〉 〈q| = 1. We can

therefore insert a 1 between every two factors of exp(−ıHδt), obtaining

〈qI | e−ıHT |qF 〉 =

N−1∏
j=1

∫
dqj

 〈qI | e−ıHδt |qN−1〉 〈qN−1| e−ıHδt |qN−2〉 · · · 〈q1| e−ıHδt |qF 〉 .

(A.21)
Now, let’s focus on one of the terms 〈qj+1| e−ıHδt |qj〉. We will take the
Hamiltonian to be

H =
p̂2

2m
+ V (q̂), (A.22)

where p̂ is the momentum operator and q̂—the position operator. Plugging
this back into our bracket,

〈qj+1| e−ıHδt |qj〉 = 〈qj+1| e−ıp̂
2δt/2m e−ıV (q̂)δt |qj〉 . (A.23)

We would like to get rid of the operators in the above expression. That’s
easy in the case of the potential: the ket |qj〉 is an eigenket of the position
operator, so we can immediately write

〈qj+1| e−ıHδt |qj〉 = e−ıV (qj)δt 〈qj+1| e−ıp̂
2δt/2m |qj〉 . (A.24)

To do the same with the momentum operator, we will enter a complete set
of momentum eigenstates,

∫
dp |p〉 〈p| = 1:

〈qj+1| e−ıHδt |qj〉 =
∫

dp e−ıV (qj)δt 〈qj+1| e−ıp̂
2δt/2m |p〉 〈p|qj〉 (A.25)

=
∫

dp e−ıV (qj)δt e−ıp
2δt/2m 〈qj+1|p〉 〈p|qj〉 . (A.26)
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Now, to get rid of all those kets, we will use the fact that a momentum
eigenstate is a plane wave in position space:

〈q|p〉 =
1√
2π

eıpq. (A.27)

It follows that

〈qj+1| e−ıHδt |qj〉 =
∫

dp e−ıV (qj)δt e−ıp
2δt/2m 1√

2π
eıpqj+1

1√
2π

e−ıpq (A.28)

=
∫

dp

2π
e−ıV (qj)δt e−ıp

2δt/2m eıp(qj+1−qj) (A.29)

= e−ıV (qj)δt

∫
dp

2π
e−ıp

2δt/2m+ıp(qj+1−qj). (A.30)

If we do the integral and perform a few algebraic manipulations, we get

〈qj+1| e−ıHδt |qj〉 =

√
−ı2πm
δt

e−ıV (qj)δt eıδt(m/2)[(qj+1−qj)/δt]2 . (A.31)

Plugging this into Equation A.21, we obtain

〈qI | e−ıHT |qF 〉 =
(
−ı2πm
δt

)N/2 N−1∏
j=0

∫
dqj exp

(
ıδt
m

2

N−1∑
j=0

(
qj+1 − qj

δt

)2

−ıV (qj)δt
)
,

(A.32)
where q0 ≡ qI and qN ≡ qF . We will now take the continuum limit as
N →∞ (which corresponds to δt→ 0). To do so, we replace [(qj+1−qj)/δt]2

with q̇2 and δt
∑N−1

j=0 with
∫ T

0 dt. The result is,

〈qI | e−ıHT |qF 〉 = lim
N→∞

(
−ı2πm
δt

)N/2 N−1∏
j=0

∫
dqj exp

(
ı

∫ T

0
dt

1
2
mq̇2 − V (q)

)
.

(A.33)
It is customary to denote the integral over paths using the following sym-
bol: ∫

Dq(t) ≡ lim
N→∞

(
−ı2πm
δt

)N/2 N−1∏
j=0

∫
dqj . (A.34)

This allows us to simplify Equation A.33 to

〈qI | e−ıHT |qF 〉 =
∫
Dq(t) exp

(
ı

∫ T

0

1
2
mq̇2 − V (q) dt

)
. (A.35)
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An interesting feature of this equation is that the term in the exponent is
just the classical action—the time integral of the Lagrangian. It turns out
that this holds in general, and we may write,

〈qI | e−ıHT |qF 〉 =
∫
Dq(t)eı

∫ T
0 L(q,q̇),dt =

∫
Dq(t)eıS(q), (A.36)

where L(q, q̇) is the Lagrangian of the particle.
The foregoing treatment was based on Zee (2003, Chapter I.2) and Townsend

(2000, Chapter 8).

A.4 Proof of Lemma 4

Lemma 4 concerns the φ4 theory with the energy given by Equation 4.38,
repeated here for convenience:

βE =
1
2

∑
〈i, j〉

(φi − φj)2 +
∑
i

(
1
2
µ2

0φ
2
i +

λ

4
φ4
i

)

Define sn = φn/|φn|. The claim is that the naı̈ve Wolff algorithm for a
model with the preceding lattice action will satisfy detailed balance if the
probability of adding a spin to the cluster, ρ, is given by

ρ =

{
1− e−2φ(o)φ(c) if so = sc,
0 otherwise,

where φ(c) is a cluster spin and φ(o) is its neighbor being added to the clus-
ter. The argument we use to prove it below is inspired by that of Schaich
(2006, section 7.3).

Recall from the previous proof the detailed balance condition, Equa-
tion A.11:

g(µ→ ν)A(µ→ ν)
g(ν → µ)A(ν → µ)

= e−β(Eν−Eµ). (A.37)

Again, we assume that the states µ and ν differ only by the flip of one
cluster. Say the cluster formed in state µ has m “bonds” between cluster
spins and aligned neighbor spins (there arem spins which could have been
added to the cluster with nonzero probability, but were not), and similarly,
the cluster in state ν has n such bonds. The ratio of the selection probabili-
ties is then

g(µ→ ν)
g(ν → µ)

=
∏m
i=1(1− ρi)∏n
i=1(1− ρi)

. (A.38)
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In the discussion of the Ising Wolff algorithm, we were able to simplify this
expression to Equation A.12 by assuming that ρi takes on the same value
for every aligned neighboring spin. Unfortunately, this is not longer the
case in the φ4 model. To make progress, we need to expand the right hand
side of Equation A.37. Since the lengths of all spins remain unchanged
in the Wolff flip, the terms depending on the second and fourth power of
φ do not contribute to the energy difference. The spins in the interior of
the cluster do not contribute to the energy change at all, since both they
and their neighbors are flipped, and (a − b)2 = (−a + b)2. Therefore, the
energy change is entriely due to the m + n bonds between spins on the
edge of the cluster and their neighbors outside the cluster. Denote the spins
constituting bond i as φ(c)i (the cluster spin) φ(o)i (the neighbor). The only
difference between the states µ and ν comes from the flipping of the cluster,
so that φ(c)i → −φ(c)i. Therefore,

βEν − βEmu =
1
2

n+m∑
i=1

[
(φ(o)i + φ(c)i)2 − (φ(o)i − φ(c)i)2

]
(A.39)

=
1
2

n+m∑
i=1

φ(o)2
i + 2φ(o)iφ(c)i + φ(c)2

i − φ(o)2
i + 2φ(o)iφ(c)i − φ(c)2

i

(A.40)

=
n+m∑
i=1

2φ(o)iφ(c)i. (A.41)

We plug this result and Equation A.38 into Equation A.37 to obtain

A(µ→ ν)
A(ν → µ)

=
∏n
i=1(1− ρi)∏m
i=1(1− ρi)

exp

(
−
n+m∑
i=1

2φ(o)iφ(c)i

)
(A.42)

=
∏n
i=1(1− ρi)∏m
i=1(1− ρi)

n+m∏
i=1

exp (−2φ(o)iφ(c)i) . (A.43)

But now, notice that the product φ(o)iφ(c)i is always positive for the m
bonds broken in the transition µ→ ν, and always negative for the n bonds
created. We may therefore write,

A(µ→ ν)
A(ν → µ)

=
∏n
i=1(1− ρi)∏m
j=1(1− ρj)

(
n∏
i=1

exp 2φ(o)iφ(c)i

) m∏
j=1

exp−2φ(o)jφ(c)j

 .

(A.44)
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As in the case of the Ising model, it is convenient to set the acceptance ratio
to unity. We can then rewrite the previous equation as

m∏
j=1

(1− ρj) exp(2φ(o)jφ(c)j) =
n∏
i=1

(1− ρi) exp(2φ(o)iφ(c)i). (A.45)

It is easy to see that this condition is satisfied if we choose

ρi = 1− exp (−2φ(o)iφ(c)i) ∀ i. (A.46)
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Appendix B

The Works

This chapter contains technical details of the computations carried out in
the course of this thesis.

B.1 Programming Languages and Libraries

B.1.1 Programming Languages Used

At the onset of this project, I knew the basics of Mathematica, but had
no programming experience; therefore, I had the freedom to choose the
language and assorted tools best suited to my needs. The two previous
Amherst theses in this area used Java (Bednarzyk, 2001) and C++ (Schaich,
2006), but both authors confessed to have been influenced by previous fa-
miliarity in making their choice. I wrote some early programs in Python, C
and C++, but settled on the last one due to its popularity and widespread
reputation for (machine, if not programming) speed. Popularity was im-
portant, because it meant that many good tutorials and books devoted
to teaching C++ were easy to find, as were numerous helpful function li-
braries such as GSL or Fog’s RandomC; furthermore, some general scien-
tific computing books, such as Press et al. (2007) and Karniadakis and Kirby
(2003), use C++ as the language of their examples. Speed mattered, too,
since I were to eventually perform large simulations. Consequently, all of
the code used in the course of this thesis was written either in C++ or in
Mathematica.

My choice of programming aids was strongly influenced by Schaich’s
Appendix B: Efficient Programming, which I wholeheartedly recommend to
anyone planning work in computer simulations. Debuggers, code profil-
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ers and automated builds (Makefiles) made coding the necessary programs
significantly easier. I departed from his recommendations in two respects,
however:

1. I did not use an automated version control system. Such programs,
which keep track and attempt to reconcile changed made to a piece of
code by different programmers over time, could indeed be invaluable
for a larger project, involving multiple researchers. My own work
involved relatively small programs and no collaboration; therefore,
automated version control seemed superfluous.

2. I did take advantage of an Integrated Development Environment (IDE).
In this, I followed the recommendation of the original source of much
of Schaich’s advice, Wilson (2006). This choice was entirely a matter
of convenience: I found learning how to use an IDE easier than mas-
tering the traditional (“ancient,” in Wilson’s words) alternatives of
emacs and gdb. The IDE I used for most of my work was Code::Blocks
8.02,1 a dedicated C++ environment. I also experimented with Eclipse,
a cross-platform IDE popular with Java developers. However, the
documentation for its C++ functionality was too scant for a beginner.

B.1.2 Random Number Generators

The generation of random numbers is a “mature” field, meaning that few
people who need high-quality random numbers will write their own gen-
erators. Neither have I. In early programs, I used the simple but solid Ran2
generator described in Press et al. (2007, p. 342). All of the φ4

2 theory simula-
tions, however, were carried out using Agner Fog’s implementation2 of the
Mersenne Twister algorithm. The algorithm was designed by Makoto Mat-
sumoto and Takuji Nishimura specifically for Monte Carlo applications; it’s
characterized by a very long period and good randomness (see Matsamuto
and Nishimura 1998 for a detailed description).

The reader interested in the topic of random number generation is re-
ferred to the excellent introduction in Press et al. (2007, chapter 7).

1As of this writing, available at http://www.codeblocks.org/.
2The implementation and its documentation can be found on the author’s website,

http://www.agner.org/random/.
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B.2 Code Snippets

B.2.1 Estimating π

The following C++ program will produce an estimate of π using a simple
Monte Carlo technique discussed in Section 2.1:

,
#include<iostream> // Necessary for producing input, output

using namespace std;

int main() {

Ran random(12356);
unsigned int InCircle = 0;
unsigned int OutOfCircle = 0;

cout << "Number of iterations?" << endl;
long unsigned int Iterations;
cin >> Iterations;

for(long unsigned int i = 0; i < Iterations; ++i) {
double x = random.doub();
double y = random.doub();
if( x*x + y*y < 1 ) {
++InCircle;

} else {
++OutOfCircle;

}
}

double Pi = 4 * InCircle / (OutOfCircle + InCircle);

cout << "Best estimate after " << Iterations << " iterations is "
<< Pi << endl;

return 0;
}

B.2.2 Simple Random Walk

The program below was used to simulate simple random walks in three
dimensions. Analogous programs were used for one- and two-dimensional
walks.

,
// Tadeusz Pudlik
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// 07/13/08
// 3D random walk to file.

#include "nr3.h" // For Ran2, the Numerical Recipes random
#include "ran.h" // number generator.
#include<iostream> // to get N, P, Trials
#include<iomanip> // for output formatting
#include<fstream> // to produce output file
#include<cmath> // for sqrt()

using namespace std;

unsigned long int GetTrials(); unsigned int GetStepNo();

int main() {
unsigned int N = GetStepNo();
unsigned long int Trials = GetTrials();

// Initialize random number generator
Ran random(73881); // Arbitrarily chosen seed

// Output file initialization
ofstream fout("3DWalk.txt");
fout << "Step number " << " Avg Disp Sq \n" << flush;

double direction; // to be randomized
long int x; // displacement of walker in the x direction
long int y; // displacement of walker in the y direction
long int z; // displacement of walker in the z direction
long int AvgSq; // average displacement squared

for(unsigned int k = 1; k <= N; ++k) { // Master loop
AvgSq = 0;
for (unsigned long int j = 0; j < Trials; ++j) {// run trials...

x = 0; y = 0; z = 0;
for (unsigned int i = 0; i < k; ++i) {// walk the walk...

direction = random.doub();
if (direction < 1.0/6) ++x;
else if (direction < 1.0/3) --x;
else if (direction < 0.5) ++y;
else if (direction < 2.0/3) --y;
else if (direction < 5.0/6) ++z;
else --z;

}
AvgSq += x*x + y*y + z*z;

}
double fAvgSq = AvgSq*1.0/Trials;

//Output
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fout << setw(11) << k
<< setw(13) << fAvgSq
<< "\n" << flush;

}

cout << "Done!" << endl;

return 0;
}

unsigned long int GetTrials() {
unsigned long int t;
cout << "How many trials per walk length you wish to run? " << flush;;
cin >> t;
return t;

}

unsigned int GetStepNo() {
unsigned int n;
cout << "How long would you like the longest walk to be? " << flush;
cin >> n;
return n;

}

B.2.3 Non-Reversing Random Walk

The code below was used to generate samples of NRRWs in d = 3. The code
for d = 2 was a simple modification of the one shown below.

,
/*
Ted Pudlik
03/26/09

This program generates a sample of non-reversing random walks
in a range of lengths. Its output is the mean end-to-end
distance squared, <R_Nˆ2>, and the standard deviation of
this mean. It’s an improvement on my early NRRW programs,
written in the summer, which didn’t record the standard
deviation.

*/

#include<iostream> // to get N, P, Trials
#include<iomanip> // for output formatting
#include<fstream> // to produce output file
#include<cmath> // for sqrt()
#include "randomc.h"
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using namespace std;

unsigned long int GetTrials();
unsigned int GetStepNo();

int main() {
int N = GetStepNo(); // Largest length of a walk
long int Trials = GetTrials(); // Trials per length

// Initialize random number generator
CRandomMersenne RanGen(time(NULL));

// Output file initialization
ofstream fout("NRRW.txt");
fout << "Step No " << " Avg Disp Sq " << " Var \n" << flush;

int prevdir = 7;
int dir; // to be randomized
long int x; // displacement of walker in the x direction
long int y; // displacement of walker in the y direction
long int z; // displacement of walker in the z direction
double Product; // to speed up the calculation of the two subsequent vars
double AvgSq; // average displacement squared
double AvgSqSq; // the square of average disp sq (for calculating sigma)

// Run simulation
for(int k = 1; k <= N; ++k) { // Master loop
AvgSq = 0;
AvgSqSq = 0;
for (long int j = 0; j < Trials; ++j) {// run trials...

x = 0; y = 0; z = 0; // Clear variables
for (int i = 0; i < k; ++i) { // walk the walk...

dir = RanGen.IRandom(0,5);
while(prevdir == dir){dir = RanGen.IRandom(0,5);}
switch(dir){
case 0: ++x; break;
case 1: ++y; break;
case 2: ++z; break;
case 3: --x; break;
case 4: --y; break;
case 5: --z; break;
default: cerr << "Central direction switch failure!" << endl;
}
prevdir = (dir+3)%6; // reversing previous step forbidden

} // end of walk loop
Product = x*x + y*y + z*z;
AvgSq += Product;
AvgSqSq += Product*Product;

} // end of trials loop
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AvgSq /= Trials;
AvgSqSq /= Trials;
// Write output to file:
fout << setw(7) << k

<< setw(11) << AvgSq
<< setw(10) << sqrt(AvgSqSq - AvgSq*AvgSq)
<< "\n" << flush;

} // end of master loop

cout << "Done!" << endl;
return 0;

}

unsigned long int GetTrials() {
unsigned long int t;
cout << "How many trials per walk do you wish to run? " << flush;;
cin >> t;
return t;

}

unsigned int GetStepNo() {
unsigned int n;
cout << "How long would you like the longest walk to be? " << flush;
cin >> n;
return n;

}

B.2.4 Ising Model: Metropolis Algorithm

The code below was used in our first simulation of the Ising model, de-
scribed in Section 3.3.

,
/*
* Metropolis.cpp

*
* Created on: Oct 12th, 2008

* Author: Tadeusz Pudlik

*
* This program is intended to run the Metropolis algorithm,

* as described in Schaich or Newman. The output

* is the complete state of the model after time T,

* produced as a text file "Metro_Raster.txt", as well as

* 10000 evenly-spaced measurements of the energy and

* magnetization, "Metro_EM.txt.". External mag field is

* assumed to be zero.

*/
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#include "nr3.h" // for random # generator
#include "ran.h" // for random # generator
#include<iostream> // to get N, P, Trials
#include<iomanip> // for output formatting
#include<fstream> // to produce output file
#include<cmath> // for sqrt()

using namespace std;

long int GetTime(int x);
double GetBeta();
bool GetInitialConditions();
int GetSeed();

int main() {
cout << "Welcome to Metropolis2!" << endl;
int J = 1;
double beta = GetBeta();
int N = 200;
int LatticeSize = N*N;
long int T = GetTime(LatticeSize);
bool Initial = GetInitialConditions();
int Seed = GetSeed();
double E = 0; // Energy
double M = 0; // Magnetization

// Initialize random number generator
Ran random(Seed); // Arbitrarily chosen seed

// Output file initialization
ofstream fout("Metro_Raster.txt");
ofstream fout2("Metro_EM.txt");

// Lattice initialization
int history[N][N];
if (Initial == true){// Randomize starting spin configuration...

for(int i = 0; i < N; ++i) {
for(int j = 0; j < N; ++j) {

if(random.doub() > 0.5){
history[i][j] = 1;
M += 1;

} else {
history[i][j] = -1;
M -= 1;

}
}

}
} else {// ... or set all spins to spin-up, depending on user’s choice

for (int i = 0; i < N; ++i) {
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for(int j = 0; j < N; ++j) {
history[i][j] = 1;

}
}
M = LatticeSize;

}

// Prepare for running algorithm
int xn; int xp; int yn; int yp; // the positions of the

surrounding sites
int n; // number of neighboring spins with the same orientation
double p; // the probability of the spin being flipped
double t; // random numer to compare p with
long int RecordingInterval = T/10000;
// Get the exponentials:
double expm2 = exp(-beta*4*J);
double expm4 = exp(-beta*8*J);

// Calculate energy and energy squared
for(int i = 0; i < N; ++i){

for(int j = 0; j < N; ++j){
//Enforce boundary conditions:
if(i+1 == N){xn = 0;} else {xn = i+1;}
if(i == 0){xp = N-1;} else {xp = i-1;}
if(j+1 == N){yn = 0;} else {yn = j+1;}
if(j == 0){yp = N-1;} else {yp = j-1;}

//Get the energy--n used for clarity
n = history[xn][j] + history[i][yn]
+ history[xp][j] + history[i][yp];

E += -J*history[i][j]*n;
}

}

//Run the algorithm
for(long int i = 0; i < T; ++i) {

n = 0;
long int x = random.int64()%N;
long int y = random.int64()%N;

// Enforce periodic boundary conditions
if(x+1 == N){xn = 0;} else {xn = x+1;}
if(x == 0){xp = N-1;} else {xp = x-1;}
if(y+1 == N){yn = 0;} else {yn = y+1;}
if(y == 0){yp = N-1;} else {yp = y-1;}

// Calculate m
if(history[xn][y] == history[x][y]){n++;}
if(history[xp][y] == history[x][y]){n++;}
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if(history[x][yn] == history[x][y]){n++;}
if(history[x][yp] == history[x][y]){n++;}

// Use m to get the probability of a transition
if(n <= 2){p = 1;} else
if(n == 3){p = expm2;} else
if(n == 4){p = expm4;}

// Do the transition with specified probability
t = random.doub();
if(p >= t){

E += 4*J*(n-2);
history[x][y] = -history[x][y];

if(history[x][y] == 1){
M += 2;

} else if(history[x][y] == -1){
M -= 2;

}
}

/* Write output to file (since Excel couldn’t deal with
too large a dataset anyway, I’ll only record 10000 values*/

if(i\% RecordingInterval == 0){
fout2 << setw(10) << i/LatticeSize

<< setw(10) << E/LatticeSize
<< setw(10) << M/LatticeSize
<< "\n" << flush;

}
} // End of Metropolis loop
fout2.close(); // Close data output file

// Write the output to file
for(int i = 0; i < N; ++i){

for(int j = 0; j < N; ++j){
fout << setw(3) << history[i][j] << flush;

}
fout << "\n" << flush;

}
fout.close(); // Close raster output file

return 0;
}

long int GetTime(int x) {
long int t;
cout << "How many iterations per lattice site "

<< "would you like the algorithm to perform? " << endl;
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cin >> t;
return t*x;

}

double GetBeta() {
double t;
cout << "How high would you like the temperature to be? "

<< flush;
cin >> t;
if(t != 0){return 1/t;} else {return 1E37;}

}

bool GetInitialConditions() {
char x;
cout << "Do you want the initial lattice to be randomized (R) "

<< "or all spin-up (S)? "
<< flush;

cin >> x;
if(x == ’R’){return true;} else if(x == ’S’){return false;} else {

cerr << "Improper input! Should be either R or S!" << flush;
return 1;

}
}

int GetSeed(){
int s;
cout << "Please set the seed for the "

<< "random number generator: " << flush;
cin >> s;
return s;

}

B.2.5 Linked List Class

The linked list class consists of a header file and a cpp file. It’s a basic data
structure: its advantages are ease of coding and fast deletion, but it’s time-
consuming to search. This implementation is based on Parlante (2001).

The header file ,
/*
This program implements a simple linked-list class.

Ted Pudlik
10/26/08

*/
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#include<iostream>
#include<sstream>

using namespace std;

struct Node {
int XValue;
int YValue;
struct Node* Next;

};

class FIFO {
public:

FIFO();
Node* Head;

void Push(int x, int y);
int GetTopX();
int GetTopY();
void ScrapTopNode();
bool Search(int x, int y);
int Count();

private:
int Size;

};

The cpp file ,
#include "LL.h"

FIFO::FIFO()
: Size(0), Head(NULL)
{
}

int FIFO::Count(){
struct Node* current = Head;
int count = 0;

while (current != NULL) {
count++;
current = current->Next;

}
return count;

}

void FIFO::Push(int x, int y){
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struct Node *Sample = new Node;
Sample->XValue = x;
Sample->YValue = y;
Sample->Next = Head;
Head = Sample;
Size++;

}

int FIFO::GetTopX(){
return Head->XValue;

}

int FIFO::GetTopY(){
return Head->YValue;

}

void FIFO::ScrapTopNode(){
struct Node *Temp = Head->Next;
delete Head;
Head = Temp;

}

bool FIFO::Search(int x, int y){
struct Node* current = Head;
while (current != NULL) {

if(current->XValue == x && current->YValue == y){return true;}
current = current->Next;

}
return false;

}

B.2.6 Ising Model: Wolff Algorithm

This program is a cluster version of the Ising model program that uses a mix
of the Metropolis and Wolff algorithms. It takes advantage of the linked
list class introduced in Section B.2.5. It was used to produce the data for
Figures 3.9(a) through 3.10(b).

,
/*
* Created on: Apr 5th, 2008

* Author: Tadeusz Pudlik

*/

#include<iostream>
#include<iomanip> // for output formatting
#include<fstream> // to produce output file
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#include<cmath> // for sqrt(), fabs()
#include<ctime> // for seeding the random number generator
#include "randomc.h" // for random number generator
#include "LL.h"

using namespace std;

int main(unsigned int argc, char** const argv) {
//*****************************************
// COMMAND-LINE PARAMETERS
if(argc != 6){cerr << "Wrong number of command line parameters"

<< endl; return 1;}
double beta = atof(argv[1])/(atof(argv[2]) +atof(argv[3])); // inv temp
int N = atof(argv[4]); // Height and width of the lattice
long int T = atof(argv[5]); // Number of sweeps to be performed

// MODEL PARAMETERS
int MetroWolffRatio = 4;
int LatticeSize = N*N;
int J = 1;
double E = 0; // Energy
double M = 0; // Magnetization
//*****************************************

// Initialize random number generator
CRandomMersenne RanGen(time(NULL));

// Lattice initialization
int Lattice[N][N];
if (true){// Randomize starting spin configuration...

for(int i = 0; i < N; ++i) {
for(int j = 0; j < N; ++j) {

if(RanGen.Random() > 0.5){
Lattice[i][j] = 1;
M += 1;

} else {
Lattice[i][j] = -1;
M -= 1;

}
}

}
}

// Prepare for running algorithm
int xn; int xp; int yn; int yp; // the positions of the surrounding sites
int n; // number of neighboring spins with the same orientation
double p = 0; // the probability of the spin being flipped
double pwolff = 1 - exp(-2*beta); // the probability of a spin being added

// to the cluster
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double t; // random numer to compare p with
// Get the exponentials:
double expm2 = exp(-beta*4*J);
double expm4 = exp(-beta*8*J);
FIFO Pocket;
FIFO Cluster;
bool ClusterArray[N][N];
for (int i = 0; i < N; ++i) {

for(int j = 0; j < N; ++j) {
ClusterArray[i][j] = false;

}
}

//Run the algorithm
for(int i = 0; i < T; ++i) {

// Do the appropriate number of Metropolis sweeps
for(int counter = 0; counter < MetroWolffRatio*LatticeSize; ++counter){

n = 0;
long int x = RanGen.IRandom(0,N-1);
long int y = RanGen.IRandom(0,N-1);

// Enforce periodic boundary conditions
if(x+1 == N){xn = 0;} else {xn = x+1;}
if(x == 0){xp = N-1;} else {xp = x-1;}
if(y+1 == N){yn = 0;} else {yn = y+1;}
if(y == 0){yp = N-1;} else {yp = y-1;}

// Calculate m
if(Lattice[xn][y] == Lattice[x][y]){n++;}
if(Lattice[xp][y] == Lattice[x][y]){n++;}
if(Lattice[x][yn] == Lattice[x][y]){n++;}
if(Lattice[x][yp] == Lattice[x][y]){n++;}

// Use m to get the probability of a transition
if(n <= 2){p = 1;} else
if(n == 3){p = expm2;} else
if(n == 4){p = expm4;}

// Do the transition with specified probability
t = RanGen.Random();
if(p >= t){

E += 4*J*(n-2);
Lattice[x][y] = -Lattice[x][y];
if(Lattice[x][y] == 1){

M += 2;
} else if(Lattice[x][y] == -1){

M -= 2;
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}
}

}

// Do a Wolff cluster flip
n = 0;
long int x = RanGen.IRandom(0,N-1);
long int y = RanGen.IRandom(0,N-1);
ClusterArray[x][y] = true;
Cluster.Push(x,y);
Pocket.Push(x,y);

// Build cluster
for(int PocketSize = 1; PocketSize > 0; --PocketSize) {

/*Here, I’d like to withdraw spins one by one and examine their
neighbours, if they’re not in the cluster already*/

x = Pocket.GetTopX();
y = Pocket.GetTopY();
Pocket.ScrapTopNode();

// Enforce boundary conditions
if(x+1 == N){xn = 0;} else {xn = x+1;}
if(x == 0){xp = N-1;} else {xp = x-1;}
if(y+1 == N){yn = 0;} else {yn = y+1;}
if(y == 0){yp = N-1;} else {yp = y-1;}

// Examine and potentially add neighbors
if( Lattice[xn][y]==Lattice[x][y]

&& ClusterArray[xn][y] == false
&& RanGen.Random() < pwolff)

{Pocket.Push(xn,y); ++PocketSize;
Cluster.Push(xn,y); ClusterArray[xn][y] = true;}

if( Lattice[xp][y]==Lattice[x][y]
&& ClusterArray[xp][y] == false
&& RanGen.Random() < pwolff)

{Pocket.Push(xp,y); ++PocketSize;
Cluster.Push(xp,y); ClusterArray[xp][y] = true;}

if( Lattice[x][yp]==Lattice[x][y]
&& ClusterArray[x][yp] == false
&& RanGen.Random() < pwolff)

{Pocket.Push(x,yp); ++PocketSize;
Cluster.Push(x,yp); ClusterArray[x][yp] = true;}

if( Lattice[x][yn]==Lattice[x][y]
&& ClusterArray[x][yn] == false
&& RanGen.Random() < pwolff)

{Pocket.Push(x,yn); ++PocketSize;
Cluster.Push(x,yn); ClusterArray[x][yn] = true;}

}
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// Flip the cluster (and calculate magnetization on the run)
for(int j = Cluster.Count(); j > 0; --j){

x = Cluster.GetTopX();
y = Cluster.GetTopY();
Cluster.ScrapTopNode();
ClusterArray[x][y] = false;

Lattice[x][y] = -Lattice[x][y];
M += 2*Lattice[x][y];

}

E = 0;
// Calculate the energy
// (difficult to do on the run because of Wolff flip)
for(int k = 0; k < N; ++k){

for(int j = 0; j < N; ++j){
//Enforce boundary conditions:
if(k+1 == N){xn = 0;} else {xn = k+1;}
if(k == 0){xp = N-1;} else {xp = k-1;}
if(j+1 == N){yn = 0;} else {yn = j+1;}
if(j == 0){yp = N-1;} else {yp = j-1;}

//Get the energy--n used for clarity
n = Lattice[xn][j] + Lattice[k][yn]
+ Lattice[xp][j] + Lattice[k][yp];

E += -J*Lattice[k][j]*n/2;
}

}

// Output results
if(i >= T/2){

cout << setw(25) << i << setw(25) << 1/beta
<< setw(25) << E << setw(25) << M/LatticeSize << endl;

}
}

return 0;
}

B.2.7 φ4 Theory: Metropolis-Wolff

This program is very similar to that of Appendix B.2.6, except for the sub-
stitution of a continuous spin for the discrete one. It uses the linked list
class introduced in Section B.2.5.

,
/*
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Phi 4 MetroWolff 2 Cout main file

Author: Tadeusz Pudlik
Date: February 9th, 2009

This program is designed to run the mixed
Wolff-Metropolis algorithm for the Phi 4 model
on the Amherst cluster. It uses Cout as its
only output command.

*/

#include<iostream>
#include<iomanip> // for output formatting
#include<fstream> // to produce output file
#include<cmath> // for sqrt(), fabs()
#include<ctime> // for seeding the random number generator
#include "LL.h" // for linked list class
#include "randomc.h" // for random number generator

using namespace std;

void EnforceBoundaryConditions(int N, int x, int y,
int & xn, int & yn, int & xp, int & yp);

int main(unsigned int argc, char** const argv) {
//***************************************************************************
// USER-EDITABLE PARAMETERS
int MetroWolffRatio = 4; // Number of Metropolis lattice sweeps

// per Wolff flip
double StepRange = 2.5; // Largest possible Metropolis step

// COMMAND-LINE PARAMETERS
if(argc != 7){cerr << "Wrong number of command line parameters"

<< endl; return 1;}
double musquared = atof(argv[1])/atof(argv[2]) - atof(argv[3]);
double lambda = atof(argv[4]); // lambda
int N = atof(argv[5]); // Height and width of the lattice
long int T = atof(argv[6]); // Number of iterations

// to be performed
//***************************************************************************

// Initialize lattice
int LatticeSize = N*N; // Numer of sites in the lattice
double E = 0; // Energy
double M = 0; // Magnetization
double SqAvgM = 0; // Square of the average of the magnetization

// (for susceptibility measurements)
double AvgSqM = 0; // Average of the square of the magnetization
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// (for susceptibility measurements)
double Avg4M = 0; // Average of the fourth power of the magnetization

// (for susceptibility measurements)
double Lattice[N][N];
for (int i = 0; i < N; ++i) {

for(int j = 0; j < N; ++j) {
Lattice[i][j] = 0;

}
}

// Initialize random number generator
CRandomMersenne RanGen(time(NULL));

// Prepare for running algorithm---declare variables used throughout
int xn; int xp; int yn; int yp; // the positions of the surrounding sites
FIFO Pocket; // Linked list
FIFO ClusterList; // Wolff cluster will be stored here...
bool Cluster[N][N]; // ... as well as here, to improve

//searchability at little memory cost
for (int i = 0; i < N; ++i) {

for(int j = 0; j < N; ++j) {
Cluster[i][j] = false;

}
}

double squared; // Used in computing energy changes
double quartic; // Used in computing energy changes
double interaction; // Used in computing energy changes
double p; // Represents probability of transition

// in Metropolis

//Run the algorithm
for(int i = 0; i < T; ++i) {

// Run an appropriate number of Metropolis sweeps
for(int counter = 0; counter < MetroWolffRatio*LatticeSize; ++counter){

long int x = RanGen.IRandom(0,N-1);
long int y = RanGen.IRandom(0,N-1);
double step = (RanGen.Random()-0.5)*2*StepRange;
double OldSpin = Lattice[x][y];
double NewSpin = OldSpin + step;

EnforceBoundaryConditions(N,x,y,xn,yn,xp,yp);

// Get the energy change, step-by-step for clarity
squared = (2+0.5*musquared)*(NewSpin*NewSpin - OldSpin*OldSpin);
quartic = 0.25*lambda*(pow(NewSpin,4)-pow(OldSpin,4));
interaction = -step*(Lattice[x][yn] + Lattice[x][yp] +

Lattice[xn][y]+Lattice[xp][y]);
double DeltaE = squared + quartic + interaction;
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// Use DeltaE to get the probability of a transition
if(DeltaE < 0){p = 1;} else p = exp(-DeltaE);

// Do the transition with specified probability
if(p == 1 || p >= RanGen.Random()){

Lattice[x][y] = NewSpin;
M += NewSpin-OldSpin;

}
}

// Do a Wolff cluster flip
long int x = RanGen.IRandom(0,N-1);
long int y = RanGen.IRandom(0,N-1);

EnforceBoundaryConditions(N,x,y,xn,yn,xp,yp);

// Examine and potentially add neighboring spins
if( Lattice[xn][y]*Lattice[x][y] > 0

&& RanGen.Random() < 1 - exp(-2*Lattice[xn][y]*Lattice[x][y]) )
{Pocket.Push(xn,y); ClusterList.Push(xn,y); Cluster[xn][y] = true;}

if( Lattice[xp][y]*Lattice[x][y] > 0
&& RanGen.Random() < 1 - exp(-2*Lattice[xp][y]*Lattice[x][y]) )
{Pocket.Push(xp,y); ClusterList.Push(xp,y); Cluster[xp][y] = true;}

if( Lattice[x][yp]*Lattice[x][y] > 0
&& RanGen.Random() < 1 - exp(-2*Lattice[x][yp]*Lattice[x][y]) )
{Pocket.Push(x,yp); ClusterList.Push(x,yp); Cluster[x][yp] = true;}

if( Lattice[x][yn]*Lattice[x][y] > 0
&& RanGen.Random() < 1 - exp(-2*Lattice[x][yn]*Lattice[x][y]) )
{Pocket.Push(x,yn); ClusterList.Push(x,yn); Cluster[x][yn] = true;}

// Build cluster
for(int PocketSize = Pocket.Count(); PocketSize > 0; --PocketSize) {

/*Here, I’d like to withdraw spins one by one and examine
their neighbours, if they’re not in the cluster already*/

x = Pocket.GetTopX();
y = Pocket.GetTopY();
Pocket.ScrapTopNode();

EnforceBoundaryConditions(N,x,y,xn,yn,xp,yp);

// Examine and potentially add neighbors
if( Cluster[xn][y] == false

&& Lattice[xn][y]*Lattice[x][y] > 0
&& RanGen.Random() < 1 - exp(-2*Lattice[xn][y]*Lattice[x][y]))

{Pocket.Push(xn,y); ++PocketSize; ClusterList.Push(xn,y);
Cluster[xn][y] = true;}

if( Cluster[xp][y] == false
&& Lattice[xp][y]*Lattice[x][y] > 0
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&& RanGen.Random() < 1 - exp(-2*Lattice[xp][y]*Lattice[x][y]))
{Pocket.Push(xp,y); ++PocketSize; ClusterList.Push(xp,y);
Cluster[xp][y] = true;}

if( Cluster[x][yp] == false
&& Lattice[x][yp]*Lattice[x][y] > 0
&& RanGen.Random() < 1 - exp(-2*Lattice[x][yp]*Lattice[x][y]))
{Pocket.Push(x,yp); ++PocketSize; ClusterList.Push(x,yp);
Cluster[x][yp] = true;}

if( Cluster[x][yn] == false
&& Lattice[x][yn]*Lattice[x][y] > 0
&& RanGen.Random() < 1 - exp(-2*Lattice[x][yn]*Lattice[x][y]))
{Pocket.Push(x,yn); ++PocketSize; ClusterList.Push(x,yn);
Cluster[x][yn] = true;}

}
// Flip the cluster (and calculate magnetization on the run)
for(int ClusterSize = ClusterList.Count(); ClusterSize > 0; --ClusterSize){

x = ClusterList.GetTopX();
y = ClusterList.GetTopY();
ClusterList.ScrapTopNode();
Cluster[x][y] = false;

Lattice[x][y] = -Lattice[x][y];
M += 2*Lattice[x][y];

}

// Calculate the lattice energy
E = 0;
for(int f = 0; f < N; ++f){

for(int g = 0; g < N; ++g){
//Enforce boundary conditions:
if(f+1 == N){xn = 0;} else {xn = f+1;}
if(f == 0){xp = N-1;} else {xp = f-1;}
if(g+1 == N){yn = 0;} else {yn = g+1;}
if(g == 0){yp = N-1;} else {yp = g-1;}

//Get the energy
squared = 0.5*musquared*Lattice[f][g]*Lattice[f][g];
quartic = 0.25*lambda*Lattice[f][g]

*Lattice[f][g]*Lattice[f][g]*Lattice[f][g];
interaction = 0.25*((Lattice[f][g]-Lattice[xn][g])

*(Lattice[f][g]-Lattice[xn][g])
+ (Lattice[f][g]-Lattice[f][yn])

*(Lattice[f][g]-Lattice[f][yn])
+ (Lattice[f][g]-Lattice[xp][g])

*(Lattice[f][g]-Lattice[xp][g])
+ (Lattice[f][g]-Lattice[f][yp])

*(Lattice[f][g]-Lattice[f][yp]));
E += interaction + squared + quartic;
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}
}

// Calculate quantities needed for susceptibility & Binder cumulant,
// if the simulation has equilibrated
if(i>200){

AvgSqM += M*M/(T-200);
SqAvgM += fabs(M/(T-200));
Avg4M += 2*M*M*M*M/(T-200);

}
} // End of Metropolis and Wolff loop

// Record results
cout << setw(20) << lambda << setw(20) << musquared

<< setw(20) << AvgSqM - SqAvgM*SqAvgM // Susceptibility
<< setw(20) << 1 - (Avg4M/(3*AvgSqM*AvgSqM))
<< endl; // BCL cumulant

return 0;
}

void EnforceBoundaryConditions(int N, int x, int y,
int & xn, int & yn, int & xp, int & yp){

if(x+1 == N){xn = 0;} else {xn = x+1;}
if(x == 0){xp = N-1;} else {xp = x-1;}
if(y+1 == N){yn = 0;} else {yn = y+1;}
if(y == 0){yp = N-1;} else {yp = y-1;}
return;

}

B.2.8 Sample Cluster Script

This section contains two sample shell scripts for submitting jobs to the
cluster. First, the master script Wolff-all.sh:

,
#! /bin/tcsh -f

# This is the script one must run to submit the job to the cluster.

set taskName = Wolff
set script = ${taskName}-one.sh
set baseDirectory = ‘pwd‘
set baseResultsDirectory = ${baseDirectory}/Phi4Production/lambda005/production600

set commandPathname = ${baseDirectory}/${taskName}.cmd
set totalJobs = 600
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# Create the results directory and make it world-writeable so that
# Condor doesn’t complain.
mkdir --parents --mode=700 ${baseResultsDirectory}

# Emit the arguments needed for the condor script. These are for all
# tasks in the job.
printf "## Global job properties\n\n" > ${commandPathname}
printf "universe = vanilla\n" >> ${commandPathname}
printf "notification = never\n" >> ${commandPathname}
printf "getenv = true\n" >> ${commandPathname}
printf "initialdir = ${baseDirectory}\n" >> ${commandPathname}
printf "priority = 5\n" >> ${commandPathname}
printf "executable = ${taskName}-one.sh\n" >> ${commandPathname}
printf ’requirements = (((Arch=="’INTEL’") || (Arch=="’x86_64’")) &&

(OpSys=="’LINUX’"))’ >> ${commandPathname}

# Loop through the arguments to be passed for each task.
set i = 0
while (${i} < ${totalJobs})

# Make the results directory for this specific job.
set resultsDirectory = ${baseResultsDirectory}/${i}
mkdir --mode=700 ${resultsDirectory}
#Simulation parameters; the executible sets musquared = a/b - c
set a = ${i}
set b = 300000
set c = 0.101
set lambda = 0.05
set N = 600
set T = 100200

# Emit the arguments for this task.
printf "\n## Task properties\n" >> ${commandPathname}
printf "log = ${resultsDirectory}/log.rtf\n" >> ${commandPathname}
printf "output = ${resultsDirectory}/out.rtf\n" >> ${commandPathname}
printf "error = ${resultsDirectory}/err.rtf\n" >> ${commandPathname}
printf "arguments = ${a} ${b} ${c} ${lambda} ${N} ${T}\n" >> ${commandPathname}
printf "queue\n" >> ${commandPathname}

@ i = ${i} + 1

end

# Submit the job.
condor_submit ${commandPathname}

# Clean up.
rm ${commandPathname}
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The script above invokes another, the smaller script Wolff-one.sh:

,
#! /bin/tcsh -f

if (${#argv} != 6) then

echo "This program requires six command line parameters!"
exit

endif

./WolffCondor.exe ${argv[1]} ${argv[2]} ${argv[3]} ${argv[4]} ${argv[5]} ${argv[6]}
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Appendix C

Survey of useful literature

This chapter contains a review of the literature I found most useful in the
course of my thesis work. Many of these sources, particularly those per-
taining to the Ising model, have already been mentioned in the text, but I
collect them here for convenience.

C.1 Programming

I learned C++ primarily from Cohoon (1997), which in retrospect may not
have been the best choice. It did contain many useful exercises and taught
me the basics, but in later chapters heavily relied on a visual library (EZ
Windows) which is of no use in scientific computing. A tutorial found on
Physics Forums1 was a valuable introduction to some elementary concepts.
Later in the course of my project I obtained Prata (2004); it served as a clear
and comprehensive reference, and would have been a good book to learn
the language from in the first place.

Gould and Tobochnik (1996) offer an inspiring introduction to scientific
computing, but the example code is regrettably in True BASIC, no longer a
widely used programming language. The third edition, published in 2006,
has examples in Java instead, and may be valuable for those interested in
using this language.

Finally, Press et al. (2007) is a comprehensive but accessibly written
source on numerical algorithms. Often called a standard reference, it is
more of a do-it-yourself guide to scientific computing, very much in the
style of Horowitz and Hill (1989).

1As of this writing, located at http://www.physicsforums.com/showthread.
php?t=32703.
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C.2 Monte Carlo Methods & the Ising Model

Two books on Monte Carlo method have been particularly useful in the
course of this work. An accessible and very well written introduction,
through the lens of lattice models such as the Ising, is Newman and Barkema
(1999), which has served as the major source for Chapter 3; it focuses specif-
ically on statistical physics and goes on to discuss glasses and ice models.
More general, but also more challenging, is Krauth (2006). Another stan-
dard is Binder and Heermann (2002), but it’s very terse and rather poorly
written compared to the previous two, so much so that it is frequently eas-
ier to understand the original papers it cites.2 The very readable book
by Binney et al. (1992) focuses on critical phenomena and fleshes out the
connection between the Landau-Ginzburg model and quantum field the-
ory, although it approaches the problem from the other side than we have
here: the LG model is treated as a toy statistical mechanics system about
which we’d like to learn more using field-theoretic methods such as Feyn-
man diagrams.

A few works with narrower focus deserve mention. An excellent re-
view of the Monte Carlo analysis of random walks, including Markov-
chain sampling, can be found in Sokal (1994). As mentioned earlier in the
text, the mathematics of Markov processes is discussed in considerable de-
tail and rigor (but with an eye to a physics, rather than mathematics audi-
ence) in Morningstar (2007).

C.3 Quantum Field Theory

A brief but comprehensive review of sources which might be of interest to
undergraduates interested in QFT can be found here: http://fliptomato.
wordpress.com/2006/12/30/. It listed every book I stumbled upon be-
fore discovering it, and more.

Schaich (2006) discusses quantum field theory, and in particular the φ4

theory, in considerably greater depth than I have here. In particular, he
covers Feynman diagrams and performs the renormalization procedure.
Griffiths (1987) is a well-regarded undergraduate text on particle physics
that introduces the basic ideas of QFT. Most of what I’ve learned, however,

2If you do pick it up, be ready for sentences like the following, found on the cover (!)
of the 1997 edition: “[This book] deals with the computer simulation of thermodynamic
properties of many-body condensed-matter systems that use random numbers generated
by a computer in physics and chemistry.”

117



I learned from Zee (2003). A word of caution is in order here: Dirac notation
is omnipresent in his book, so if you’re not comfortable with it (I wansn’t),
you may want to take a look at the first few chapters of Townsend (2000).

Ryder (1996) is a useful, but somewhat dry introduction. While Zee in-
troduced QFT through the path integral formalism of quantum mechanics,
as I have here, Ryder (and Schaich) take the so-called canonical approach
that begins by considering the field φ as a creation-annihilation operator.
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